
MULTI-TASK AND TRANSFER LEARNING IN LOW-RESOURCE SPEECH

RECOGNITION

by

Josh Meyer

Copyright ©Josh Meyer

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF LINGUISTICS

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2019

1





Acknowledgments

Thank you to my family for always being there for me: Mom, Dad, Jon, Joe.

Спасибо тебе, Оксана, за то, что всегда верила в меня.

Thank you to my committee for keeping me on track: Tom Bever, Mihai Surdeanu,

Mike Hammond, and Clay Morrison. Thanks to all the folks in Tucson who taught

me how to find research funding: Georgia Ehlers, Dorian Voorhees, and Shelley

Hawthorne-Smith. Thanks to my benevolent employers in the Linguistics Department:

Andrew Carnie, Diana Archangeli, Diane Ohala, and Amy Fountain.

Thank you to all my friends in Tucson who kept me happy: Nick Kloehn, Mary-

Caitlyn Valentinsson, Dra. Megan Figuerora, Nick Granum, Shiloh Drake, Rolando

Coto, Kevin Schluter, Bill Cotter, Becky Sharp, Gus Hahn-Powell, Dane Bell, Emily

Bell, Ryan Smith, Jaime Parchment, Yuan-Lu Chen, David Ellison, Genêt Klasek, Joe

Dupris, Shannon Grippando, Sam Johnston, Megan Kittleson, and Michael Capizzi.

Thank you to the amazing folks at the American University of Central Asia, for

welcoming me over the years: especially Angie Popova and Svetlana Jacquesson.

Thanks to Gulnara Shabdanova, for both being a friend and for playing a huge hand

in my research in Kyrgyzstan.

Thank you to the Mozilla Machine Learning Research Group for giving me the

opportunity to work with all kinds of great languages and share my code Openly with

the world: Kelly Davis, Reuben Morais, Alexandre Lissy, Tilman Kamp, Eren Gölge.

A special thanks to Kelly for making it all possible.

Thank you to those gave thoughtful feedback on drafts of the disseratation:

Guangpu Huang, Joan Bajorek, Sebastian Ruder, Michael Capizzi, and Sam Johnston.

Thank you to Fran Tyers for inspiring me to do more, to make Open data and

code, and for good times in Moscow with хачапури. Thanks to Nick Howell for good

conversations on neural nets and privacy.

Thank you to LIMSI and the CNRS for hosting me as a visiting researcher: Lori

Lamel and Jean-Luc Gauvain.

Lastly, thank you to the organizations that have funded me over my graduate

3



research career: the National Science Foundation∗, the American University of Central

Asia, the French Embassy to the United States, the Internationl Speech and Communi-

cation Association, the U.S. Department of State Bureau of Intelligence and Research,

and the University of Arizona Social and Behavioral Sciences Research Institute.

∗This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the authors(s) and do not necessarily reflect
the views of the National Science Foundation.

4



Contents

Abstract 10

1 Introduction 11

1.1 Objectives of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Context of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Significance of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Limitations of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 A Brief Overview of ASR 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 1952: Isolated Word Systems: Bell Labs . . . . . . . . . . . . . . . . 23

2.3 1971: Constrained Sentence Recognition: ARPA . . . . . . . . . . . . 25

2.4 1994: The GMM-HMM Approach: HTK . . . . . . . . . . . . . . . . 29

2.5 2011: The Modern DNN-HMM Approach: Kaldi . . . . . . . . . . . . 42

2.6 2014: End-to-End ASR . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Previous Work on Model-Data Fit for GMM-HMMs 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Feature Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Cepstral Mean and Variance Normalization . . . . . . . . . . . 54

3.2.2 Vocal Tract Length Normalization . . . . . . . . . . . . . . . . 56

3.3 Feature-based Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 56

3.4 Model-based Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Maximum Likelihood Linear Regression . . . . . . . . . . . . . 58

3.4.2 Maximum A Posteriori . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 i-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 An Overview of Multi-Task Learning in Speech Recognition 65

4.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Introduction to Multi-Task Learning . . . . . . . . . . . . . . . . . . 66

4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Multi-Task Learning in ASR . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Monolingual Multi-Task ASR . . . . . . . . . . . . . . . . . . 73

4.3.2 Multilingual Multi-Task ASR . . . . . . . . . . . . . . . . . . 79

4.3.3 Multi-Task Learning in Other Speech Technologies . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Multi-Task Acoustic Modeling via Linguistic Categories 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Linguistic Features . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Generate Alignments . . . . . . . . . . . . . . . . . . . . . . . 90

6



5.2.2 Train DNN Acoustic Model . . . . . . . . . . . . . . . . . . . 93

5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Monolingual Experiments . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Multilingual Experiments . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Multi-Task Acoustic Modeling via Non-Linguistically Engineered

Tasks 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Contributions of this Chapter . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 DNN-Hybrid Training as Model Transfer . . . . . . . . . . . . . . . . 105

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Multi-Task Acoustic Modeling via Discovered Tasks 114

7.1 Contributions of this chapter . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.1 Auxiliary Task Discovery . . . . . . . . . . . . . . . . . . . . . 116

7.3.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Qualitative Analysis of Newly-Found Labels . . . . . . . . . . . . . . 119

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5.1 Hyperparameter Choice . . . . . . . . . . . . . . . . . . . . . 122

7.5.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7



7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 End-to-end Cross-lingual Transfer Learning† 126

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Overview of Transfer Learning . . . . . . . . . . . . . . . . . . . . . . 129

8.5 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.5.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 130

8.5.2 Transfer Learning Procedure . . . . . . . . . . . . . . . . . . . 130

8.5.3 Training Hyperparameters . . . . . . . . . . . . . . . . . . . . 132

8.5.4 Language Model . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5.5 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5.6 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.6.1 Frozen Parameter Transfer . . . . . . . . . . . . . . . . . . . . 137

8.6.2 Fine-Tuned Parameter Transfer . . . . . . . . . . . . . . . . . 139

8.6.3 Importance of Data Size for Transfer . . . . . . . . . . . . . . 141

8.7 Model Interpretability: Investigating Embeddings . . . . . . . . . . . 141

8.7.1 Speech vs. Noise Classification . . . . . . . . . . . . . . . . . . 145

8.7.2 Language Identification . . . . . . . . . . . . . . . . . . . . . . 146

8.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.8.1 Relation to ULMFiT . . . . . . . . . . . . . . . . . . . . . . . 148

8.8.2 Relevance to the Linguist . . . . . . . . . . . . . . . . . . . . 149

9 Conclusions 151

9.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2 The Approaches Taken in this Dissertation . . . . . . . . . . . . . . . 151

9.3 Implications and Future Directions . . . . . . . . . . . . . . . . . . . 152

†This chapter is a modified version of a paper co-authored by Josh Meyer, Francis Tyers, Reuben
Morais, and Kelly Davis.

8



9.3.1 Multi-Task Experiments . . . . . . . . . . . . . . . . . . . . . 152

9.3.2 Transfer Experiments . . . . . . . . . . . . . . . . . . . . . . . 153

9.3.3 Model Interpretability Experiments . . . . . . . . . . . . . . . 154

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 157

9



Abstract

This thesis investigates methods for Acoustic Modeling in Automatic Speech Recog-
nition, assuming limited access to training data in the target domain. The Acoustic
Models of interest are Deep Neural Network Acoustic Models (in both the Hybrid
and End-to-End approaches), and the target domains in question are either different
languages or different speakers. Inductive bias is transfered from a source domain
during training, via Multi-Task Learning or Transfer Learning.

With regards to Multi-Task Learning, Chapter (5) presents experiments which
explicitly incorporate linguistic knowledge (i.e. phonetics and phonology) into an
auxiliary task during neural Acoustic Model training. In Chapter (6), I investigate
Multi-Task methods which do not rely on expert knowledge (linguistic or otherwise),
by re-using existing parts of the Hybrid training pipeline. In Chapter (7), new tasks
are discovered using unsupervised learning. In Chapter (8), using the “copy-paste”
Transfer Learning approach, I demonstrate that with an appropriate early-stopping
criteria, cross-lingual transfer is possible to both large and small target datasets.

The methods and intuitions which rely on linguistic knowledge are of interest to
the Speech Recognition practitioner working in low-resource domains. These same
sections may be of interest to the theoretical linguist, as a study of the relative import
of phonetic categories in classification. To the Machine Learning practitioner, I hope
to offer approaches which can be easily ported over to other classification tasks. To
the Machine Learning researcher, I hope to inspire new ideas on addressing the small
data problem.
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Chapter 1

Introduction

1.1 Objectives of Dissertation

The main goal of this dissertation is to answer the following question: How can we

best exploit small target datasets (and larger, source domains) to train Acoustic Models

for Automatic Speech Recognition via Multi-Task Learning and Transfer Learning?

There are many interesting approaches to working with small datasets in Automatic

Speech Recognition (ASR). In the following studies, I have chosen to work specifically

with the Multi-Task Learning (MTL) and Transfer Learning (TL) approaches because

in their general forms they can be applied to data beyond just speech or audio, and as

such the findings of this work may find applications in other areas of machine learning.

Firstly, I investigate methods of label-generation which build off linguistic knowl-

edge (i.e. phonetics and phonology). These methods can be used to train an Acoustic

Model for any language. Secondly, I investigate methods of label-generation which do

not rely on expert knowledge (linguistic or otherwise). I demonstrate that it is possible

to automatically generate new label-spaces which are useful for Multi-Task acoustic

modeling by re-using existing parts of the traditional ASR pipeline or by discovering

new labels with unsupervised learning. Lastly, using the well-known “copy-paste”

Transfer Learning approach, I demonstrate that with an appropriate early-stopping

criteria cross-lingual transfer is possible to both large and small target datasets. The

chapter on Transfer Learning ends with experiments on model interpretation which

11



get at the linguistic relevance of the embeddings learned at various layers of the model.

The methods and intuitions which rely on linguistic knowledge are of interest to

the ASR practitioner who wants to train Acoustic Models for low-resource domains.

These same sections are of interest to the theoretical linguist, as a study of relative

import of phonetic categories in classification. To the machine learning practitioner, I

hope to offer approaches here which can be directly (or with some minor adjustments)

ported over to other classification tasks. To the machine learning researcher, I hope

to inspire new ideas on addressing the small data problem.

1.1.1 Multi-Task Learning

The term “Multi-Task Learning” is used to describe both a model training procedure

and a model architecture.[20] The architecture definition is straightforward: a Multi-

Task model is a model which can perform multiple tasks. A task is defined here as a

mapping of data to labels, between a certain data domain and label domain. With

regards to the training procedure definition, a model is trained with MTL when a

subset of parameters are updated in parallel, and another subset of parameters are

updated individually for each task. In fact, it is possible that the trained MTL model

may only perform one task. In this scenario, the auxiliary tasks exist solely to exert

inductive bias during training. These auxiliary tasks serve as “training wheels” which

are removed once the main task is ready to perform on its own. The current research

takes this approach to Multi-Task Learning: multiple tasks are trained in parallel, but

at test time only the main task is used for classification.

MTL models come in all shapes and sizes, but they can be boiled down to one of

three main categories: (1) multi-label, (2) multi-data, or (3) multi-label and multi-data.

These groups are shown for neural networks in Figure (1-1).∗ For neural nets, we have

a set of shared hidden layers, and some task-specific input or output layers.

The Multi-Task studies here deal with multi-label models: one input layer and

multiple output layers. In this way, MTL flips the small data problem on its head –

∗These figures are adapted from Heigold et al. (2013), and reproduced with permission from the
first author. Variations on these neural nets will appear throughout the dissertation.
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(a) Multi-Label (b) Multi-Data (c) Multi-Label + Multi-Data

Figure 1-1: Possible Multi-Task Architectures

creating more labels instead of finding more data. Given multiple sets of labels for some

dataset, MTL trains feature extractors which are biased towards task-independent

representations of the data. An intuitive example of this kind of multi-label scenario

is the classification of a picture of a German Shepard as a German Shepard, a canine,

and a mammal. These three labels all belong to the same training data example: a

particular photograph of a German Shepard. This scenario assumes the researcher

has access to multiple sets of labels for the data, however this is usually not the case.

I investigate methods of generating labels for existing datasets which can be then

used in a Multi-Task framework. The architecture of the MTL Deep Neural Network

(DNN) is not manipulated, and as such any improvements in model performance are

attributable to the choices of labels alone. The techniques developed here for label

generation are all language-independent. The first experiments are specific to working

with speech data, whereas last experiments are applicable to any classification task,

regardless of data-type.†

1.1.2 Transfer Learning

The term “Transfer Learning” refers to a general model training procedure. A model

is trained on some task in some domain, and then a subset of the parameters are used

†This assumes the data can be represented numerically as N-dimensional feature vectors.
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Figure 1-2: “Copy-Paste” Transfer Learning. In this example, a subset of model
parameters trained on a language using the Latin alphabet is used to create a new
model for a new language, written with the Cyrillic alphabet. Blue model parameters
have been copied from the source model, and the green model parameters have been
re-initialized from scratch.

to initialize a new model for a new domain (or a new task). The subset of parameters

may happen to be the exact set of all model parameters. This is possible in the

case that the input features and output labels for the target task exist in the same

dimensionality as the source task. For the work investigated in this dissertation, all

the input features have the same dimensionality, but the output labels are different.

As such, the TL approach here requires initializing (from scratch) the output weight

matrix and biases for the target task. Given that the TL approach involves copying

some pre-trained weights and transfering them to a new model, I will refer to this

approach as “copy-paste” Transfer Learning. A figure representing this “copy-paste”

transfer may be found in Figure 1-2.
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1.2 Statement of the Problem

The problem addressed in this dissertation is the following: Current methods for

training speech recognition systems require massive collections of labeled data, but most

use-cases have little — if any — available data.

A large collection of recorded and transcribed speech (i.e. a spoken corpus) is

required to create a speech recognizer for a new application. It is more than likely

however, that such a corpus does not exist for the application of interest. The

application could be for a new language (e.g. the Kyrgyz language), for a specific

group of speakers (e.g. English speakers from Southern Wales), or for a new recording

setting (e.g. far-field speech from lab meetings in some conference room). In all

three of these cases, a speech recognizer trained on speech from any other language,

speakers, or recording conditions will perform poorly. This is because the actual data

of interest, the data on which our recognizer should be modeled, is not represented in

the training set. Typically researchers and practitioners work around the problem by

collecting as much data as possible from similar conditions. However, this approach

does not solve the problem. A model trained on a massive corpus of American English

will still perform worse for a single speaker compared to a model trained on a corpus

of only that individual.

Data from the target domain is best for our models but, as noted earlier, it is not

easy to find. The typical approach to building a new application is to record and

transcribe a new dataset from scratch. The problem is: recording a large corpus of

new audio for every new use-case is not a scalable approach. This is especially relevant

to work involving artificial neural networks, which are particularly data-hungry. Given

standard training approaches for these massive models, data collection becomes the

major bottleneck. Collecting and creating data resources is a time-consuming and

expensive endeavor. Collecting acoustic data is especially difficult because the audio

must be acquired and then transcribed. Unlike text data which can be easily scraped

from the web, scraping the web for audio is not a viable option. Transcription of

casual, spontaneous speech requires upwards of five hours of work per hour of speech.
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To create a state-of-the-art ASR system, the model requires approximately 2,000 hours

of transcribed audio. A corpus of that size requires 10,000 hours of person hours of

transcription. At a salary of merely $10 dollars an hour, it will cost $100,000 dollars

to transcribe an adequately-sized speech corpus.‡

Given this problem of insufficient data for current training methods, we can

conceptualize two main approaches to tackle the problem:

1. Change the Data

(a) create large, labeled speech datasets for all the world’s languages, accents,

noise environments, etc.

2. Change the Technique

(a) develop techniques which can make use of much smaller labeled corpora

(b) develop techniques which can make use of purely unlabeled speech corpora

Of these two approaches, (1) is not feasible. There currently exist nearly 7,000

languages in the world, and of those, the top 397 languages have more than 1 million

native speakers each [91]. To create large, labeled corpora for even the most widely

spoken languages of the world would take far too much time and money.

Beyond the practical challenges concerning dataset creation, the problem of missing

data will not disappear even if we cover all the existing languages, dialects, and accents

in the world. Languages are continually changing and accents are constantly merging

and diverging. As such, a speech recognition system trained from a given dataset will

become out-dated within just one generation of new speakers. Furthermore, even if

we chose to ignore the language change issue, speech corpora are recorded in a finite

set of environments (e.g. in the office, in a park, over the phone), and the recognizer

will perform significantly worse on speech recorded in any new environment. Current

approaches would suggest that we train a new model for each environment, as is

current practice with broadcast news speech versus telephone conversations [140, 55].
‡An excellent counter example to this problem is the Common Voice project from Mozilla, which

crowd-sources both the recordings and the transcription verification.
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Given that the number of new environments is infinite, the generalization problem is

here to stay.

1.3 Context of the Problem

The broader context of the stated problem is the following: The small data problem is

found everywhere in machine learning, not just speech recognition.

The issues of modeling low-resource languages, unknown speakers, and new envi-

ronmental noise may seem very specific to ASR, but in fact, these are core issues of

machine learning faced in every application of classification, regression, and pattern

matching (cf. survey in [107]). In the well-established field of computer vision, much

work in object recognition has been devoted to this problem, under the name domain

adaptation (cf. a recent survey in [112]). Likewise, the problem surfaces in NLP

under the names domain adaptation and transfer learning [35, 107, 16]. Taking a

step back to a higher level of abstraction, all of these issues (ASR of different accents,

classification of photos taken with different cameras, POS tagging for different writing

styles) fall within one major issue in machine learning.

A classifier will perform best on data from its training set, and worse on

all other data.

This is because the classifier overfits to the training data and learns representations

which ignore useful information about the task at hand and encode misleading infor-

mation about dataset noise. Using this framing of the problem (mismatch between

testing and training data), we are able to attack the specific issues found in Automatic

Speech Recognition for low-resourced languages by drawing inspiration from research

in other machine learning fields such as NLP and computer vision.

The main ideas which inspired the approach in this thesis come from Multi-Task

learning [20], domain adaptation, transfer learning [120], learning to learn [145], cur-

riculum learning [14], domain knowledge integration [62], and representation learning

[13].
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1.4 Research Questions

The main research questions investigated in this thesis are the following:

1. How can linguistic theory be used to create new labels for speech data (for training

via Multi-Task Learning)?

2. How can new labels be automatically discovered for speech data without expert

domain knowledge (for training via Multi-Task Learning)?

3. How can Transfer Learning in ASR be truly general (for cross-lingual transfer

scenarios)?

The first question is relevant to ASR practitioners as well as theoretical linguists.

The second and third questions are of interest to ASR practitioners as well as the

general machine learning community, because the techniques can be extended to any

other classification or regression problem.

1.5 Methodology

The two main methodologies of the dissertation may be summarized as follows: (1)

Building on the traditional Hybrid speech recognition pipeline, Multi-Task Acoustic

Models are trained where auxiliary tasks are either crafted from expert linguistic

knowledge or automatically generated. (2) Using a trained End-to-End ASR for a

source language (English), “copy-paste” Transfer Learning is investigated on an open,

massively multilingual speech corpus.

1.5.1 Multi-Task Learning

Traditional Automatic Speech Recognition is composed of two main phases: first,

the audio signal is transcribed at the phonetic level; second, the resulting phonetic

transcription is transduced into a string of words. These two steps are modulated

by two independently trained systems: the Acoustic Model and the decoding graph,
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respectively. The Multi-Task experiments here relate to the first system: the acoustic

model. The Acoustic Model in Hybrid speech recognition is a Deep Neural Network

(DNN) which takes as input some audio signal features and returns as output a

probability over phonetic symbols. Like all DNNs, these Acoustic Models require

labeled data to be trained via backprop.

I examine DNN Acoustic Models which are trained with multiple output layers in

order to update a set of shared hidden layers. These extra output layers are referred

to as auxiliary tasks, new tasks, or new labels. Figure (1-3) displays a diagram

of the DNN architecture used in the Multi-Task studies.§

Figure 1-3: Multi-Task DNN Acoustic Model

The number of input nodes on these DNNs correspond to the dimensionality of

audio features, and the number of nodes on each output layer corresponds to the

number of targets for that particular label set. In the traditional case (i.e. Single-

Task Learning) the dimensionality of the output layer merely reflects the number of

context-dependent phonemes (i.e. triphones), whereas the dimensionality of the input

layer reflects standard audio features (e.g. MFCCs). During Multi-Task learning, all

§Figure reproduced from Heigold et al. (2013).
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tasks (i.e. separate output layers) are trained in parallel, but during testing only one,

main task is used.

1.5.2 Transfer Learning

The final experiments in Transfer Learning investigate an End-to-End Transfer Learn-

ing approach for Automatic Speech Recognition which bypasses the need for linguistic

resources or domain expertise. Certain layers are copied from a trained source model,

new layers are initialized for a target language, the old and new layers are stitched

together, and the new layers are trained via gradient descent. The effects of fine-

tuning the original, copied layers are also investigated. Additionally, the quality of

the embedding spaces learned by each layer of the original model are investigated.

Specifically, results are given from linguistically motivated logistic regression tasks

which are trained on top of feature-spaces at different model depths. Results are

presented for transfer-learning from English to the following twelve languages: German,

French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton, Tatar, Chuvash,

and Kabyle.

1.6 Significance of Dissertation

The significance of this dissertation is twofold: to the ASR community and to the

machine learning community. This dissertation is significant to the ASR community

because it demonstrates multiple new avenues for working with low-resource languages.

This dissertation is significant to the general machine learning community because it

works toward generalizable techniques for training statistical classifiers for any dataset.

With regards to Multi-Task Learning, while advances have been made in numerous

machine learning domains, its use in ASR is currently limited. One of the major

blocks for MTL in ASR is that the auxiliary tasks need to be defined by an expert

linguist. I demonstrate methods to automatically generate tasks for a given dataset,

leading to improvement on the target domain.

Past work on MTL in ASR can be divided into two main categories: monolingual
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and multilingual. Multilingual MTL acoustic modeling involves training a single DNN

with multiple output layers, where each output layer represents targets for a separate

language.[75, 71, 59] Monolingual MTL acoustic modeling involves designing multiple

tasks for a single language, where each task is linguistically relevant (e.g. vocal cord

vibration, place of articulation, manner of articulation). [12, 76, 135, 25, 24] This

dissertation integrates advances from both these veins of research (i.e. monolingual

and multilingual) in addition to automatizing the generation of the auxiliary task

labels. With regards to multilingual training, I take a new approach to representation

of the source language. There have been previous efforts to represent source languages

via linguistic categories, but these attempts have almost always created a larger label-

space, projecting the source language labels onto some form of multilingual alphabet.

These attempts have require linguistic mappings from source to target language, or

from source language to multilingual representation. The techniques here do not

require any mapping between languages. Rather, I use linguistic concepts to create

a more abstract label set from the source language. With regards to monolingual,

Multi-Task speech recognition, I project a language’s labels into a lower dimensional

space, but with more dimensions than previous work. My approach removes one

linguistic dimension, instead of mapping every phoneme onto a single dimension. The

tasks generated automatically (i.e. without any linguistic knowledge) are perhaps the

most important contribution of this dissertation. Continuing work in this direction

holds much promise — because truly unsupervised auxiliary task generation can be

ported to any new classification task.

With regards to Transfer Learning in ASR, the final chapter is important because

it extends previous results to multiple languages, using open data and an open, pre-

trained source model. To my knowledge, this is the first paper reporting End-to-End

ASR results from a free and open model, which is important for replicability.
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1.7 Limitations of Dissertation

The main limitations of this work are the following: The only measure of interest is

the accuracy of the final, trained model. The training time and space requirements

were largely ignored.

Some of the methods developed here, if run on larger datasets, may require long

training times. For the current study this is not an issue because the focus is small

data sets, but it does face an issue for the generalization of these methods to all

classification problems. In the approach taken here, every additional auxiliary task

requires an additional iteration over the entire dataset.

1.8 Road Map

This dissertation is written for the reader who has at least some familiarity with Deep

Neural Networks. Familiarity of Automatic Speech Recognition, Multi-Task Learning,

and Transfer Learning are beneficial, but not required.

Chapter (2) contains an overview of Automatic Speech Recognition. Chapter

(3) contains an overview of past traditional approaches in ASR to deal with small

or unseen data. Chapter (4) delivers a brief overview of Multi-Task Learning as

well as past work in ASR using MTL. Chapter (5) presents experiments and results

from linguistically defined auxiliary tasks. Chapter (6) presents results results from

experiments where auxiliary tasks are derived as a by-product in the traditional ASR

pipeline. Chapter (7) presents results from MTL experiments where the auxiliary task

labels are discovered via unsupervised clustering. Chapter (8) explores a Transfer

Learning approach with End-to-End ASR on a massively multilingual corpus. Chapter

(9) concludes the dissertation with a discussion and directions for future work.
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Chapter 2

A Brief Overview of ASR

2.1 Introduction

This chapter outlines the training and testing procedures in standard Automatic

Speech Recognition (ASR) pipelines. The overview will provide the reader with a

technical grounding in ASR.

All research exists in some historical context, answering pressing questions of the

timee while making use of and reacting to existing technologies. Speech Recognition

research in particular is a field which has clearly grown in directions defined by military,

academic, and commercial influence. Early work on Speech Recognition reflected

the needs of telecommunications companies. Then came a wave of interest from

the US Department of Defense, and most recently the four tech giants – Google,

Amazon, Facebook, and Apple. While all these initiators pushed researchers in

different directions, they all share one common goal: to make ASR more human-like.

2.2 1952: Isolated Word Systems: Bell Labs

Most of the early work on ASR in the 50’s and 60’s focused on isolated word, speaker-

dependent speech recognition. This research was lead by R&D labs at Bell Labs and the

NEC Corporation, but also academic labs such as MIT Lincoln Labs. [36, 42, 46, 103]

At this time there were also attempts at phoneme-level transcription, but these were
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less successful (the task is inherently harder). [105]

The typical use case was a single adult male carefully reading off single digits into

a microphone. One of the very first demonstrations reported accuracy rates of up

to 99% on isolated digit recognition [36]. This system relied on approximations of

the formant frequencies to recognize entire words. There was no model of syllables or

consonants or vowels or any kind of sub-word unit in these systems. The word was

treated as a single unit, and during classification all words were compared to each

other to find the best match. An example set of templates (from the original Bell

Labs paper) is shown in Figure (2-1).

Figure 2-1: Template-matching of Spoken Digits: Davis et al. 1952

This work, along with most others of this time period, relied on a template-matching

framework. An exemplar of each word was saved to disk (for each speaker ideally), and

when a user spoke a new, unknown word into the microphone, the computer compared

that audio with all the exemplars it had on file for that speaker. The closest match

was returned back, and when recognizing a set of ten digits, this worked surprisingly

well. The Bell Labs system worked in the following way:

1. FEATURE EXTRACTION

(a) Two frequency ranges of the audio are extracted, which roughly correlate

to the first two formants of speech.
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(b) These two formants are plotted on an x vs. y axis in time.

2. TEMPLATE MATCHING

(a) The 2-D plot from new audio is compared to each of 10 exemplars on file,

and closest match is returned.

It may sound like Speech Recognition was off to a great start with accuracy rates

near 99%, but this early template-matching approach could not be extended for a few

reasons. These approaches relied on acoustic properties of vowels in a whole-word

template-matching scheme which requires a representation of each word saved on disk.

If extended to larger vocabularies, this paradigm would run into major issues in time

and space complexity. If the system needed to recognize 1, 000 words instead of just

10, the time needed to compare new input to each of the 1, 000 exemplars would be

prohibitive. Additionally, the space on disk would increase with every additional word.

Therefore, both time and space complexity are proportional to the number of words

in the lexicon. This does not bode well for scaling to all words in a language. Aside

from implementation issues with this approach, a more fundamental limitation is the

use of whole words as templates, and extracting only formant frequencies as features.

Two words with similar consonants and identical vowels (e.g. ‘dog’ vs ‘dock’) would

be nearly indistinguishable for this system.

The major issues with these digit recognizers stem from the unit of comparison

(i.e. what does the template represent?) and the extraction of features (i.e. how is

the template stored?). In the following, the unit of comparison changes from the

word to the phoneme, and the features extracted change from formants to fine-grained

frequency bins, such as Mel-frequency cepstral coefficients (MFCCs).

2.3 1971: Constrained Sentence Recognition: ARPA

Speech research soon was boosted into full gear in 1971, when the Advanced Research

Program Agency (ARPA) of the US Department of Defense launched the 5-year

Spoken Understanding Research (SUR) program. The goal of the program was to
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“obtain a breakthrough in speech understanding capability that could then be used

toward the development of practical man-machine communication systems”.[83] ARPA

wanted something that Airforce pilots could control with their voice while their hands

were busy steering. The SUR program sponsored four main research groups: two

groups from Carnegie-Mellon University, one from Bolt Beranek and Newman Inc.,

and one from Systems Development Corporation. Probably the most significant result

of the ARPA project was James Baker’s 1975 dissertation at CMU, which firmly

established the Hidden Markov Model in ASR.[7]

The contestants were given the task of creating a system which could recognize

simple sentences from a vocabulary of 1, 000 words with a 10% WER in reasonable

time. In order to make a recognizer that could handle sentences instead of isolated

words, where the length of that string was unknown to the system, major overhauls

of the Isolated Word system were needed. First of all, it was clear that storing an

exemplar of each word on disk is not an option with continuous speech systems. In

addition to the nearly impossible task of discovering word boundaries from raw audio,

the decoding speed would be horrendous (even if word boundaries were found). The

machine would have to compare each word to each of the 1, 000 candidate words on

disk. The space used on disk would be prohibitive, not to mention the time needed

by the user to record every word during speaker enrollment. Modeling whole words

became an obvious bottleneck to recognition of continuous speech. As such, the

phoneme became the unit of modeling. Figure (2-2) displays a possible decoding graph

from CMU’s submission: the Harpy system.[83]

The phoneme is the smallest meaningful speech sound. Every language has a finite

set of phonemes, and with this finite set of phonemes all words are created. Typically

languages don’t have more than 50 phonemes, and that number will not increase with

vocabulary or grammar complexity. Where simple systems had hard limits of 100 or

1, 000 words, with only 50 discrete phonemes there is no upper limit to the number of

words a phoneme-based system can recognize. All of the teams in the ARPA project

used the phoneme as the unit for modeling speech. At the end of the project, the

team at Carnegie Mellon showed best performance with Harpy.[94] Like in Isolated
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Figure 2-2: Example Decoding Graph from the Harpy system. (Klatt 1977)

Word Recognition, all teams used some kind of template matching, but with phoneme

templates instead of word templates. The Harpy system decoded a new utterance in

the following way:

1. FEATURE EXTRACTION

(a) process audio with 5kHz low-pass filter and sample to 10k samples per

second

(b) extract linear prediction coefficients in 10-ms frames with a 10-ms shift

(c) group together adjacent acoustic segments if similar

2. GRAPH CONSTRUCTION

(a) a set of 98 phonemes (and diphones) defined by experts

(b) pronunciations for all words defined

(c) pronunciations of all accepted sentences in the grammar compiled into one

graph (15, 000 states with self-loops)

3. DECODING

(a) incoming audio segments compared against 98 templates

(b) best path (with beam search) returned
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Harpy is a speaker-specific system, and the 98 phoneme templates need to be

tuned to each speaker. For a new speaker to be enrolled into the system, she must

spend about 30 minutes recording example sentences, which are then force-aligned

to the graph. This forced-alignment, however, assumes that at least one speaker has

already been enrolled, and their 98 phoneme templates are used to align the next

speaker’s audio. Given that command and control was the target application, a limited

vocabulary and limited grammar was reasonable. The user said one short sentence

(from a constrained, finite set), and the decoder compared that sentence to a graph of

all possible sentences, and returned the closest match. This assumes the user actually

said a sentence in the machine’s vocabulary. Each user was trained to work with the

machine (learn its grammar), and the machine was trained to work with each user

(via enrollment).

What these recognizers lacked in flexibility, they gained in accuracy. The machine

didn’t have to consider more than 1, 000 words and a simple grammar. Furthermore,

there was no real issue of noise conditions, because recording and testing would be both

in quiet conditions. There was no worry about microphone robustness or sampling-rate

issues, because the creators knew exactly beforehand what hardware the recognizer

ran on. This approach worked just fine until users wanted something more human-like.

First of all, training the recognizer to work for every new user was a hassle. We

humans don’t need to relearn all sounds in our language when we meet someone new,

but these machines did. We humans can understand our friends when we’re in an

echoey factory or in a small room, but these machines couldn’t.

Regardless of the successes of the SUR program, ARPA was disappointed. The

best system, Harpy, decoded in about 80x real time. Harpy could not be used in

practice, and speeding her up was not a simple task. In his review of ARPA’s Speech

Understanding Research Program, Dennis Klatt concluded that “all [teams] failed to

meet the ARPA goals.”[83]

In addition to problem of speed, grammar flexibility was a major concern for

making systems that could recognize spontaneous speech. The kinds of sentences

recognized by Harpy were determined by a Backus-Naur form (BNF) grammar. This
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consisted of a set of hand-crafted rules, and was not easily extensible. Even in the

1980’s, researchers realized that such a grammar was not a viable option. A major shift

was about to take place in the speech recognition world, moving away from template

matching and strict grammars towards statistical Acoustic Models and statistical

grammars. Instead of hard assignments, a better system would assign a kind of

likelihood to the sentence, word, or sound in question.

2.4 1994: The GMM-HMM Approach: HTK

Hidden Markov Models (HMMs) were introduced in the 1970’s [7], Gaussian Mixture

Models (GMMs) [78] and statistical grammars [79] were introduced in the 1980’s, but

it wasn’t until the 1990’s that all three parts were combined into one Open Source

toolkit: the Hidden Markov Model Toolkit [168].

The Hidden Markov Model Toolkit (HTK) was the first toolkit to incorporate all

of the core components of Modern GMM-HMM speech recognition. CMU’s Sphinx

was a leader in the ASR toolkit game [88], but the first version of CMU’s Sphinx

used Vector Quantized codebooks to estimate emission probabilities on HMM states,

while HTK began with GMMs in 1994. Regardless of HTK and Sphinx’s (minor)

differences in performance, HTK’s extensive documentation (The HTK Book) became

the reference of choice for most speech recognition researchers. The first results of the

HTK system were reported as a benchmark on DARPA’s Resource Management task

in 1992 [162]. The standard GMM-HMM pipeline of HTK is outlined below:

1. FEATURE EXTRACTION

(a) sliding window feature extraction

2. GMM-HMM MONOPHONE TRAINING

(a) Flat-start alignment

(b) Baum-Welch re-estimation

3. GMM-HMM TRIPHONE TRAINING
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(a) Phonetic decision tree

(b) Baum-Welch re-estimation

4. DECODING

(a) Network compilation

(b) Viterbi decoding

FEATURE EXTRACTION

A common goal of all feature extraction in speech recognition is the following: to

make speech-information more available for statistical modeling. The raw audio signal

is not conducive to modeling speech. Feature extraction enhances the signal-to-noise

ratio, but it is more than just a “cleaning” of audio. Raw audio is simply air pressure

measured in time. Speech is transmitted via change in pressure, and as such raw

audio contains all the information relevant to human speech. However, speech sounds

are differentiated by amplitudes in both the frequency and time domain. Figure (2-3)

displays audio in raw, waveform (top) and with frequency information made explicit as

a spectrogram (below). Feature extraction makes that frequency information available

explicitly, instead of relying on the statistical model to infer on its own.

Figure 2-3: Waveform vs. Spectrogram.

The two standard audio feature extraction techniques in HTK (and in ASR in

general) are Mel-frequency cepstral coefficients (MFCCs) or perceptual linear prediction

(PLPs). Overlapping windows are shifted across the audio, from beginning to end,
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to extract feature vectors. For each timestep, the audio falling inside the window is

subjected to a series of transformations which reduce the dimensionality of the data

and highlight speech-specific information. Typically the windows are 25 milliseconds

long, and the the shift is 10 milliseconds as shown in Figure (2-4). In this way, enough

time is allowed to capture phonetic information inside one window.

Figure 2-4: Sliding Window Feature Extraction via HTK. (Young 2002)

Ideally, every feature vector should contain enough information to identify the

phoneme which was uttered at that timestep.

MONOPHONE TRAINING

A monophone GMM-HMM Acoustic Model contains (as the name suggests) one model

for one phoneme. For a language with 50 phonemes, a monophone system will have

50 separate GMM-HMMs. The number of states in each phoneme’s HMM is not

specified, and is a matter of researcher discretion. Given that human speech is a

purely left-to-right signal, monophone HMMs are defined to be strictly left-to-right,

with the addition of self-loops. Abstracting away from some of the implementation

specifics, each monophone HMM will be designated as such:

Figure 2-5: Three-state Hidden Markov Model.
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The self-loops (as in the Harpy system) nicely model the differences in time which

occur in speech. A long, drawn-out vowel will be modeled with the exact same HMM

as a short, quick vowel. The longer vowel will just have to pass through more self-loops.

Most GMM-HMMs in speech recognition use three states (c.f. Figure (2-5)) because

neighboring phonemes blend together. Acoustic features at phoneme boundaries differ

significantly from the center of the phoneme. All else being equal, the central state

of a monophone should be more consistent than its edges. In addition to modeling

co-articulation, three states will allow for the modeling of more complex sounds like

affricates or stop consonants, which are composed of multiple acoustic events. For

instance, a stop consonant like [b] can be broken into three parts (closed voicing,

plosive release, aspiration). Each of these three parts is a separate acoustic event,

and should ideally be modeled separately. Hidden Markov Models with multiple

states allow for fine-grained modeling of a single phoneme into its component parts.

However, merely defining the typology of an HMM is not sufficient to use it in speech

recognition. HMMs are defined by:

1. a set of states

2. a set of transitions between states

3. the probability of traversing each transition

4. a set of possible observations

5. a probability of each state generating each possible observation

So far we have defined how many states we want (three states per phoneme), we

have defined the kinds of transitions between states (left-to-right or self-loop), and

we have defined the shape of the emission probability of each state (a multivariate

Gaussian mixture model). However, what this gets us is merely a set of skeleton

GMM-HMMs. For these HMMs to be useful, we need to have accurate transition

probabilities (such that the probability of leaving any non-final state == 1) and

emissions probabilities (the 𝜇, 𝜎2 for each Gaussian component). That is, we need
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to estimate the parameters of our HMM-GMMs. Incorporating all the requirements

discussed to this point, we have defined the architecture in Figure (2-6). All the

relevant parameters are untrained, however.

Figure 2-6: Untrained HMM-GMM

One approach to get these numbers would be to sit down and think really hard

about what these numbers should be, filling them in ourselves. We could make

self-loops for vowels longer than stop consonants, and we could define the parameters

of Gaussians based on some knowledge of acoustic phonetics. However, this is a pretty

horrible idea. So instead of trying to guess these values, we use some concepts from

machine learning to learn them from data. We are going to estimate our parameters.

To learn about the acoustics of human speech, we need to collect a lot of it.

However, just having access to a huge spoken corpus isn’t enough; we need to know

which segments of the audio correspond to which states in our GMM-HMMs so that

we can update parameters given the appropriate data. While it is certainly possible

to align segments of audio to HMM states by hand, it is a very tedious job (examples

of this kind of corpus include TIMIT [50] and the Ohio Buckeye corpus [115]).

A much better approach is to automatically align audio segments (i.e. feature

vectors) to HMM states. The algorithms for this alignment have been known since the

1960’s, and are guaranteed to achieve the best HMM for the given data [10, 122]. This

parameter estimation technique is called the Baum-Welch Algorithm, and it falls into

the category of Expectation Maximization (EM) algorithms. The technique involves

an iterative process in which the model generates a new set of labels for the data, and

trains itself on that new dataset. Using the Baum-Welch algorithm, given (1) a speech

corpus, (2) transcriptions of the speech, and (3) a pronunciation dictionary, we can

estimate all the parameters of our Acoustic Models (i.e. our GMM-HMMs).
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Flat-Start Alignment

In order to successfully train our monophone GMM-HMMs from speech data, we

eventually want to have the entire corpus split into segments which correspond to the

states of the HMMs. Before we can begin iterations of Baum-Welch, we need a first

guess as to what the parameters could be – that is, we need an initial alignment to

the data. Flat-start training is a very simple solution to this first-alignment problem.

For Baum-Welch re-estimation to work, we use the parameters of our model to

generate new alignments for the model itself. However, in the first step, we have no

initialization for the model parameters. We could initialize all parameters randomly,

and then start Baum-Welch. This in principle should work, but it would take a long

time because the initialization would be nowhere near the data. A better first guess

would come not from random parameters, but from the audio itself.

In flat-start training, we assume a few things: (1) utterances, (2) transcriptions

for the utterances, and (3) a phonetic transcription for every word in the transcripts.

Given these three things, we can construct a phonetic transcription for each utterance.

Given a phonetic transcription of an utterance in training, starting from left to right,

we assign an equal section of the audio to each phoneme in the transcription. This

first left-to-right alignment is our initial guess (i.e. our flat-start). In practice, this

works faster than randomly initialized parameters.
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1: procedure Compile Utterance HMMs from Transcripts
2: for each utterance in corpus do
3: Initialize utterance HMM with start state
4: for each word in utterance do
5: Lookup pronunciation of word in lexicon
6: for each phoneme in word do
7: Lookup monophone HMM definition for phoneme
8: Concatenate monophone HMM to utterance HMM
9: end for

10: end for
11: Finalize utterance HMM with accepting state
12: end for
13: end procedure

14: procedure Align Feature Vectors to Utterance HMMs
15: for each utterance HMM in utterance HMMs do
16: N= number of states (minus initial and final) in utterance HMM
17: M= number of feature vectors from utterance audio
18: nVecs = M/N = number of feature vectors assigned to each state
19: Traversing feature vectors left-to-right, assign nVecs vectors to each state
20: end for
21: end procedure

Figure 2-7: Flat Start Alignment: First HMMs are compiled for every utterance in
the training set, and then the audio feature vectors are aligned to those HMM states
from left to right. Flat-Start alignment allows us to make alignments for an initial
parameter estimation.

In this way, Flat Start training allows us to make an initial estimate for every

parameter of every monophone GMM-HMM in our acoustic model. This is a very,

very crude first estimate, and its assumptions are absurd. This alignment assumes

that each phoneme in a word is exactly the same length as every other phoneme in

that word, and actually in the whole utterance. Human speech doesn’t work like this,

and as such it seems like there’s no way that flat start training could work, but it

does. One assumption is the saving grace of Flat start training. The assumption

is that the linear order of phonemes in an utterance is left-to-right. With just that

one assumption built into the typology of our HMMs, we can use the Baum-Welch

algorithm to make increasing better alignments to the speech data. It works because

Baum-Welch training is guaranteed to improve model-data fit, no matter how bad the

original fit is.
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Baum-Welch re-estimation

Now that we have an initial estimate of all the parameters in our monophone GMM-

HMMs, we can use both the data and the model to make better and better alignments.

The basic idea of Baum-Welch is that we can use the the current model parameters of

any given utterance HMM to generate the most likely alignment of that HMM to its

corresponding audio clip. Then we take that alignment as the ground-truth alignment,

and update the model parameters accordingly.

By iterating over (1) parameter updating and then (2) alignment generation, we

reach parameters that get closer and closer to true estimates. It is key to remember

that all the utterances are updated in unison, and as such, the sounds and speech rates

and other peculiarities of individual audio utterances become averaged out. Given

that GMM-HMMs are generative models, we are maximizing the likelihood of the

data given the model. Our implementation of the EM algorithm (i.e. Baum-Welch

training) is a special case of Maximum Likelihood Estimation (MLE), where we don’t

have full information about the relationship between our model and the data. If

we had the golden truth for alignments between feature vectors and HMM states,

then we would just update the parameters once, and there would be no re-alignment

afterwards. However, since we don’t have the alignments, we need to guess at them,

and our guesses get better over time.

TRIPHONE TRAINING

Monophone systems work well, but they are too simple to model natural speech in its

full complexity. In order to increase the complexity of monophone HMMs, there are a

few routes we can take.

1. add more states to each HMM

2. add more GMMs to each state

3. create more HMMs
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Monophones can become fairly powerful models if we keep adding Gaussian

components to each state. We can also add more states to each HMM, and in this

way capture more nuanced time information and co-articulation effects. However, no

matter how many extra states we add and no matter how many extra Gaussians we

throw into a state, at the end of the day, monophone models will average together every

instance of a phoneme. This is bad because phonemes vary acoustically depending

on their context, and we can predict those variations. If we can predict variation, we

should model it.

Collapsing every realization of a phoneme into one HMM results in fuzziness in

the model. For example, the vowel [ah] will display very different formant patterns if

is pronounced between nasals [n+ah+n] (‘non’) versus when it is found between two

stops [t+ah+t] (‘tot’). These co-articulation effects are predictable given the context,

and as such, we can reliably model them if we give our model enough freedom.

Ideally, we would like to model every phoneme in every phonetic context with its

own HMM. In that way, we would be sure that all predictable variation would be built

into the acoustic model. If we have 𝑁 number of phonemes in our language, instead of

defining a mere 𝑁 monophones, we would ideally train 𝑁 *𝑁 *𝑁 models, one model

for every possible context, to account for both left and right co-articulation effects.

However, training 𝑁3 models is much more difficult that training 𝑁 models, because

the probability of finding 𝑁3 contexts in any speech corpus is 0% . No language will

allow for 𝑁3 combinations of phonemes. Furthermore, given a finite data set, the

more parameters we define the less data is available for each state.

Phonetic Decision Tree

The phonetic decision tree allows us to model more context than a mere 𝑁 models,

but fewer parameters than 𝑁3. Introduced by Steve Young in 1994, the phonetic

decision tree automatically defines model complexity by appropriately assigning and

increasing model parameters as the dataset increases in size.[169] This efficiently avoids

over-fitting on small datasets and increases model power to better exploit big datasets.

Phonetic decision trees also allow for modeling of phonetic contexts which were never
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observed in the training data.

With monophone HMMs, the identity of the phoneme itself defines the model. To

double the model complexity, we could split all training examples for each monophone

into two categories: (a) the phoneme occurs in middle of word or (b) the phoneme

occurs at a word edge. This division between word-internal phoneme and word-edge

phonemes will account for a good deal of predictable variation. The [l] in ‘lamp’ and

the [l] in ‘complex’ would be assigned to different monophones.

Now, we can stop here, (doubling complexity) or we can try to model more pre-

dictable information about each phoneme. Triphone decision trees work by extending

the tree downwards from monophones, by asking questions about the left and right

context. Out of all the possible predictors we could add to the model, left and right

context accounts for a good deal of variation, regardless of speaker, noise channel, or

anything else. The resulting models are called ‘triphones’ because they relate to three

phonemes (left phone, right phone and central phone). [169]

The questions of the tree encode build on the linguistic knowledge that groups

of phonemes may exert similar co-articulation effects. Instead of an unsupervised

clustering algorithm that decreases the 𝑁3 possible triphones to 𝑀 physical models,

the tree makes splits in its branches based on some linguistically relevant questions.

For example, a question in the tree could ask if the phoneme to the right is a nasal

consonant (R=Nasal?), where the concept of nasal consonant would have to be defined

before training. This way, triphones are grouped together by both the data and prior

beliefs about natural classes of phonemes.

To train the phonetic decision tree (similar to Classification and Regression Trees

(CART)), a set of monophones is trained. Next, every monophone HMM is copied

and re-labeled as a triphone (given left and right context). Given these new, observed

triphones, Baum-Welch re-estimation is performed over all the training data. The

individual triphones will have a chance to update their parameters based on their own

designated subset of the feature vectors. Next, with these updated triphone models

we train the decision tree. All decision trees are trained at the state level. That is,

each state can have its own root. Figure (2-8) shows a tree trained for the second
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Figure 2-8: Phonetic decision tree for the second state of the phoneme [aw]. (Young
1994)

state of the phoneme [aw]. During the phonetic tree training process, the researcher

assigns some hyperparameters:

1. what kinds of questions can split branches

2. how many leaves in the tree

3. how many Gaussians are allotted to the entire tree

4. how many Gaussians allotted to each leaf

Baum-Welch re-estimation

After the phonetic decision tree has been defined, the new triphones are retrained

based on the alignments from the possible triphones.
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DECODING

Decoding in HTK can be customized to a good extent, but there is a common thread

in its approach that stems from Baker’s work all the way back in the mid-1970’s. A

graph is compiled, and then the graph is searched. In HTK the graph is called a

network.

Network compilation

The compiled network contains hierarchical information about (1) grammatical word

sequences, (2) word pronunciations, and (3) phoneme contexts. HTK is very flexible

about which kinds of grammars can be integrated into the network, but the standard

approach is to use an n-gram backoff language model. HTK also implements dynamic

graph construction, so that the entire graph may be larger than available memory on

the computer.

Taking an example from the HTK book itself, Figure (2-9) is a toy grammar for

the two words ‘bit’ and ‘but’. The grammar will accept any sequence of these two

words, in any order. Looking at this HTK network from the level of words, we will

find this kind of structure:

Figure 2-9: Word-Level Decoding Network in HTK. (Woodland 1993)

When we add information about pronunciations, we get the graph structure shown

in Figure (2-10):

Finally, the lowest level of detail models to the contexts of the phonemes (tri-

phones), shown in Figure (2-11). We can see that by modeling context-dependency,

we’ve expanded our original monophone [b] into four possible [b]’s in context:
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Figure 2-10: Monophone-Level Decoding Network in HTK. (Woodland 1993)

[t+b+i],[sil+b+i],[t+b+u],[sil+b+u].

Figure 2-11: Triphone-Level Decoding Network in HTK. (Woodland 1993)

Viterbi decoding

In HTK, the Viterbi algorithm is re-framed into what is called the ‘Token Passing

Model’. An example of Viterbi decoding is shown in Figure (2-12). This approach

encodes information of visited paths via a Token which is passed from state to state. In

Viterbi decoding, the single best possible path is returned. A ‘Token’ is a object which

contains (a) the path sequence through which it travelled, and (b) the probability of

that path given the input audio features. The HTK decoding graph represents words

and phones as separate states, such that at the end of a string of phones, the Token

must pass through a Word state. As a result, every Token collects a sequence of words

as it travels through the graph.

Overall, HTK is a solid toolkit for speech recognition. More than anything, it

became replaced because of its restrictive license.
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Figure 2-12: Viterbi Decoding in HTK. (Woodland 1993)

2.5 2011: The Modern DNN-HMM Approach: Kaldi

The modern HMM-based approach is built on Deep Neural Networks, and these models

are refered to as DNN-HMMs. This is also called the ‘hybrid’ approach, because

it is a merger of the HMMs from traditional GMM-HMM speech recognition and

neural net acoustic modeling. The Hybrid approach started gaining traction in the

2000’s, when neural nets were re-discovered and GPUs were used to perform backprop

operations. For ASR in particular, the publishing of Hinton et al’s 2012 paper “Deep

Neural Networks for Acoustic Modeling in Speech Recognition”, solidified the staying

power of DNNs in speech recognition.

Kaldi is currently the most popular ASR toolkit for DNN-HMM research not only

because it supported DNN acoustic modeling before other toolkits – Kaldi also takes

a different implementation of the graph decoder, based on Weighted Finite State

Transducer technology. [100, 101] Kaldi is written in C++ with a much more open

license than HTK or Sphinx, making it appealing to both researchers and industry

developers.

The DNN-HMM and GMM-HMM approaches are very similar in almost all respects,

and the DNN is essentially just a drop-in replacement for the GMM acoustic model.

Nevertheless, some adjustments need to be made for the Viterbi decoding math to
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work out. The standard decoding computations require the Acoustic Model to produce

a likelihood of the audio given a phoneme, and while GMMs return likelihoods of the

audio given the phoneme, neural nets return a posterior probability for each phoneme

given the audio. Aside from some minor math adjustments, at decoding time GMMs

and DNNs serve the same purpose. Both Acoustic Models return information about

phoneme-audio relations. The rest of the decoding graph (phonetic dictionary, n-gram

language model) remains the same.

Even though the DNN-HMM and GMM-HMM follow nearly identical procedures

during decoding, their training is significantly different. In fact, the standard DNN

training procedure relies on the GMM training to produce labeled data. Neural

networks require labeled data for supervised training∗ and in our case the training

example is a pair (X,Y), where X is a window of audio features and Y is a phoneme

label. However, standard training data for speech recognition does not have labeled

data of this kind. Typically we only have sentence-level utterance transcriptions, and

as such, for DNN training to work, we need to generate the alignments of audio to

phonemes.

GMM-HMM training uses Baum-Welch parameter estimation via flat-start mono-

phone training to iterate steps of alignment and estimation in order to generate

more and more accurate alignments (and more accurate GMMs). This procedure is

mathematically sound, guaranteed to lead to better and better parameter estimates

for the given data.

Piggy-backing off this procedure, DNN-HMM training depends on GMM-HMMs

because Baum-Welch training produces alignments (i.e. labeled data). These align-

ments are then used as training data for DNN training with gradient descent via

backprop.

Typically, to integrate time information into DNN Acoustic Model training, the

input features are not merely passed in one frame at a time, frame-splicing occurs.

The net still makes predictions one frame at a time, but left and right context is added

on to some central frame. The net then makes a prediction as to the identity of the

∗Notable exceptions are Sequence-to-sequence models.
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phoneme which produced the central frame.

1. FEATURE EXTRACTION

(a) sliding window feature extraction

2. GMM-HMM MONOPHONE TRAINING

(a) Flat-start

(b) Baum-Welch re-estimation

3. GMM-HMM TRIPHONE TRAINING

(a) Phonetic decision tree

(b) Baum-Welch re-estimation

4. DNN TRAINING

(a) Frame-splicing

(b) Gradient descent via backprop

5. DECODING

(a) WFST Graph compilation

(b) Viterbi decoding

DNN TRAINING

Recall that the phonetic decision tree from the GMM-HMM model was used to define

which triphone states would be merged together, and as such, the number of leaves in

the tree equals the number of individual HMM models to be trained. The identity of

each GMM is therefore the label for the training data, and when we train a DNN in

Kaldi, we are predicting these same labels. We can view the DNN-Hybrid approach as

a kind of model transfer, where we first create a generative classifier (GMMs defined

by decision tree) and we train a DNN to perform the same task. This is shown in
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Figure (2-13).† The number of nodes on the output layer of the DNN, therefore, equals

the number of leaves in the previously trained decision tree.

Figure 2-13: Label Equivalencies in GMMs vs. DNNs

Even though the labels come directly from the GMM model, for the DNN, each

training data instance (audio frame) will contain additional contextual information.

Given the alignments from the triphone GMM-HMM system, first we splice features

in order to create training examples. This step should result in the same number

of (label,data) pairs as were provided by the GMM system. It is common to

splice a large window of frames (up to 10 frames on each side), and then reduce

the dimensionality of the data with some transform (typically Linear Discriminant

Analysis (LDA)).

DECODING GRAPH

Kaldi’s approach to graph compilation sets it apart from other toolkits. Building

on work by Mohri [100, 101], Kaldi implements every knowledge source in the ASR
†The original tree figure comes from Young (1994) and the net comes from Heigold (2013).
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pipeline (aside from the Acoustic Model) as a Weighted Finite State Transducer

(WFST). WFSTs are an elegant choice for speech decoding, because they allow for not

only hierarchical combination of knowledge (sentences, words, phonemes), but also the

combination of weights from each level of the hierarchy. That is, we can just as easily

assign probabilities to sequences of words as to sequences of phonemes. All these

sources of probabilities are encoded as weights on a WFST, and during compilation,

all that information and bias is saved and used.

Following Mohri, Kaldi creates a single master decoding graph from four (4)

WFSTs. The final graph is called HCLG, and it is the composition of subgraphs H, C,

L, and G.

H: pdfs → triphones

C: triphones → monophones

L: words → monophones

G: words → words

Starting from the highest level and working down, the WFST ‘G’ represents the

grammar defined by the language model (c.f. Figure (2-14)) It accepts valid sequences

of words, and returns both a weight (pseudo-probability) and that same sequence of

words.

Figure 2-14: Grammar WFST. Mohri (2002)

If we use a backoff n-gram language model to define our grammar, then we will

have different possibilities depending on how much of the sequence was observed in

training. A decoding graph cannot recognize a word it never saw. For example, given

a sequence of words (e.g. “She codes best in Python.”), that sequence will be assigned

a higher probability if it was seen contiguously, rather than if all the words were
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seen apart. If that sentence was never seen in training, but the two sentences: “She

codes best in class.” and “She prefers C++ to Python.”, then the original sentence is

grammatical, but the bigram “in Python” was never seen. As such, the backoff weights

for “in” and “Python” would be combined. This is the idea behind a backoff language

model, and WFSTs naturally encode this with a backoff state. In Figure (2-15), b is

the backoff state, w1 is “in” w2 is “class” w3 is “Python”

Figure 2-15: WFST Backoff Model. Mohri (2002)

To encode information about word pronunciation from the phonetic dictionary

(also known as a Lexicon), Kaldi uses a WFST called L.fst (c.f. Figure (2-16)). This

WFST accepts a sequence of phonemes and returns a word and a weight (along with

a string of epsilons, which are ignored).

Figure 2-16: Phonetic Dictionary WFST. Mohri (2002)

The next WFST encodes information about the triphone-monophone relationship.

This WFST is called C.fst because it contains phoneme context. It translates a

sequence of phonemes into a sequence of triphones (Figure (2-17)).

This last WFST encodes all the information from the phonetic decision tree. It

accepts triphones and returns state identities. You will notice that all arcs leaving a
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Figure 2-17: Monophone to Triphone WFST. Mohri (2002)

state have the same label. This is because Kaldi encodes all information about states

via arcs. Technically, HCLG does not contain states. They are inferred from the arcs.

As such, the H.fst (Figure (2-18)) accepts a triphone and returns the IDs of the states

of which the triphone is comprised. If we have 3-state models, then C.fst will return 3

states for every triphone. These state IDs are linked to either individual Gaussian

mixtures (for GMM-HMM) or output nodes of a neural network (for DNN Hybrid

system).

Figure 2-18: A Gaussian to Triphone State WFST.

2.6 2014: End-to-End ASR

The ASR world changed dramatically in 2014 with the first publications showing

promising results from End-to-End (i.e. audio to text) speech recognition. [57, 64, 66,

58, 28] Previous approaches to ASR involved training separate models for acoustics,

word sequences, and pronunciations. Mastering each of these separate models takes

considerable time for an engineer, and is a burden to implementing and trouble-
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shooting speech recognition in production. Furthermore, the traditional, Hybrid

approach is disfavored a priori because each model requires its own objective function

during parameter estimation, and as such joint estimation of all models is not possible.

Traditional Hybrid approaches are also disfavored because they pose a strict limit on

the set of recognizeable words. If a word is present in the language model, then the

Hybrid model can decode it – however, words absent from the language model are

Out-Of-Vocabulary (OOV) and will be impossible to recognize in speech.

End-to-end speech recognition is prefered because there is a single Loss function for

parameter estimation. This Loss allows us to directly model the problem of interest:

finding the best transcript for a given audio segment. However, by throwing out

the HMMs from the Hybrid approach, End-to-End models do not have access to the

alignment information typically used in training traditional models. As such, the

End-to-End speech recognition model must find an alignment of the text and audio

during training – this is not a simple task.

The first approaches to End-to-End speech recognition made use of the Connec-

tionist Temporal Classification (CTC) objective function. [57, 64, 66, 58, 2] The

Sequence-to-Sequence model with Attention approach was established soon after.

[28, 6] A notable extension of the Sequence-to-Sequence model with Attention is the

so-called “Listen, Attend, Spell” (LAS) model. [22] Breaking with recurrent models,

Wav2Letter was introduced and built on purely convolutional layers and a modifi-

cation to the CTC Loss function. [30] The RNN Transducer approach allows for

on-line, streaming decoding as in CTC models, but also by-passes the CTC conditional

independence assumption. [124, 9]

Over the last five years, End-to-End models have become more performant, but

they typically are trained on massive in-house datasets only available to the tech

giants. Nevertheless, there is current research on making these End-to-End models

work for smaller datasets, and Chapter (8) of this dissertation lends itself to that

literature.
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2.7 Conclusion

The pipelines and algorithms used in Automatic Speech Recognition have changed

significantly since the 1950’s, and they continue to evolve. It is easy to see that these

techniques build off of one another, discarding or adjusting modules in the pipeline.

Older systems’ approaches may be incorporated into newer pipelines, as we find in

Hybrid neural net Acoustic Modeling. These neural networks rely on Gaussian-based

models to generate alignments for supervised learning.

Speech recognition has evolved in order to produce more accurate systems, faster

decoding, and simpler pipelines. The emergence of End-to-End systems is a prime

example of research moving along lines not dictated by model accuracy alone. It

has taken years for End-to-End models to reach the performance (in terms of Word

Error Rate) of Hybrid DNN-HMM models. However, the simplicity of a single, unified

neural network in addition its potential to make better use of larger datasets has

driven research forward for End-to-End models.
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Chapter 3

Previous Work on Model-Data Fit for

GMM-HMMs

The easiest and most straightforward way to improve noise robustness is to attempt to

collect large amounts of data from a wide range of acoustic environments. Although

this so-called multi-environment training works reasonably well up to a certain limit,

it is obvious that the problem of noise robustness cannot be solved by simply collecting

a huge training set. It is impossible to collect such a database that would cover all

possible usage environments. (Viikki 1998, p. 134)

3.1 Introduction

The problems of model generalization existed long before DNNs were introduced to

speech recognition. The field’s long history with GMM Acoustic Models contains a

wealth of studies which tackle the same low-resource problems faced today. While many

of the specifics in the implementations of these approaches cannot be directly ported

over to DNN-based speech recognition, they present interesting conceptualizations of

the problem.

This low-resource issue is a special case of the generalization problem, because

we would like to generalize from training to test data, but it is rarely successful

out-of-the-box.[47] For speech, the test data may have been recorded (a) in a different
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noise environment (e.g. outdoors, warehouse, in a car), (b) via a different channel (e.g.

different microphones, cellphones), or (c) by different speakers (e.g. different ages,

different genders). An extreme case of mis-match is when the training and test data

come from (d) different languages. The terms noise robustness [56], channel robustness

[125], speaker adaptation [161, 104, 90, 51], and language adaptation [134, 15] have

been used to categorize these sub-literatures.

Overfitting to a domain occurs because statistical models encode not only informa-

tion relevant to the task, but they also “learn” misleading noise specific to the training

data. With regards to ASR, this means that speaker-dependent models will encode

information about speakers, noise-dependent models will encode information about

noise, and channel-dependent models encode information about channels. For a speech

recognizer to do its job, it must ignore all irrelevant information about speakers, noise,

and channels. A speech recognizer should only care about speech (i.e. phonemes), and

be able to recognize that speech in any context.

The following GMM-based approaches attack the problem by identifying three

important resources: (1) in-domain data, (2) in-domain model, and (3) out-of-domain

data (either small amount or not available). Given these three resources, the following

general approaches have been proposed:

1. make the two datasets more similar

2. adapt the old model to the new data

3. adapt the new data to the old model

Of the three approaches listed above, the first approach is called feature normalization.[154,

37] Feature normalization attempts to perform feature extraction so that features

from different domains will look similar for phonetically similar units. For example,

an [a] will look like an [a] whether is was spoken by a man or a woman. You can

think of this approach as a kind of data cleaning, where we want to filter out all noise

but save all linguistic information. These feature normalization techniques make no

reference to acoustic models, and as such can be applied before any model is trained.
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The second approach consists of so-called model-based adaptation.[129, 138, 144,

48, 90, 51, 151] Model-based adaptations aim to take old model parameters and

update (or transform) them in a way that improves task performance on a new

data set. This assumes we have access to some new data, and usually that the

data set is small.∗ Whether we are estimating a transform of the model or we are

estimating the model itself, we can think of model adaptation as falling into two

major categories. Adaptation using (a) only adaptation data or (b) adaptation data

plus prior knowledge. The use of these two sources is what differentiates the popular

Maximum Likelihood Estimation (MLE) [90] from the Maximum A Posteriori (MAP)

[51] estimation approaches. In the following, 𝜃 refers to model parameters, and 𝑋

refers to a training data set.

𝜃𝑀𝐿𝐸 = argmax
𝜃

𝑝(𝑋|𝜃)

𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝(𝑋|𝜃) · 𝑝(𝜃)

Regardless of the source of knowledge, we can think all kinds of model-based

transforms as taking old model parameters 𝜃𝑜𝑙𝑑, and projecting them into a different

space 𝜃𝑛𝑒𝑤.[138] Ideally, we want this projection to:

1. lose information specific to the original data set

2. capture new information about the new data set

3. retain general information common to both data sets

We assume the two data sets (original + adaptation) have information in common,

and that the original model captured some of that common information. Otherwise

there would be no point in using the original model at all.

∗If the new data set is big enough, it would make more sense to train a new model from scratch.
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A third approach to improving data-model fit is feature adaptation. Feature

Adaptation is a special case where we use the model to find a good transformation of

the data to the model. [63, 39]

3.2 Feature Normalization

3.2.1 Cepstral Mean and Variance Normalization

Cepstral Mean and Variance Normalization (CMVN) is an attempt to extract features

which are robust to environmental influences.[154] During CMVN an Acoustic Model

is never referenced, only the features themselves. CMVN it is an attempt to perform

speech recognition better in unseen environments and unseen speakers, and it is

not trained from a dataset per se, but applied locally per utterance. CMVN is an

application of a technique common in statistics: z-scoring. To build an intuition for

what kind of transformation CMVN performs on the speech data, below is an example

of CMVN (z-scoring) performed on a small random dataset (drawn from a Poisson

probability density function). The first line of Python code below generates the data,

and the second line performs the transform.

import numpy as np

org_data = np.random.poisson(lam=10.0,size=1000)

new_data = ( ( org_data - np.average(org_data) ) / np.std(org_data) )

Figure (3-1) displays the data as histograms before (3-1a) and after (3-1b) the

transformation, we can visualize what CMVN accomplishes. Firstly, we can see that

the spatial relations among all data points remains the same, this is a nice feature if

we want to distinguish different classes of data (as in phoneme classification). While

the shape of the data hasn’t changed, if you look at the x-axis, you will observe that

the data has shifted to the left. Once the mean was subtracted from each datapoint,

the data becomes centered at [0].
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(a) Original Data (b) Normalized Data

Figure 3-1: Z-score Normalization

Now that we’ve seen the general case of z-scoring, it is easy to see how we can

use CMVN to combat lower recognition performance on data from (1) different noise

conditions and (2) different recording channels. These conditions typically carry some

stable, additive noise which can be effectively separated from the signal by removing

the mean and dividing by the standard deviation. In speech recognition, however, it

has been found that instead of taking the global mean and standard deviation for

some audio file, it is best to use immediate context (via a sliding window) to estimate

the mean (𝜇) and standard deviation (𝜎).

This is good intuitively, because we may have noise which is stable for some period

of time, but not the entire time of the utterance. For example, someone turns on a

fan for just a few minutes during recording. If we try to subtract the fan noise from

the entire utterance, we will remove signal where the fan noise doesn’t exist. For this

reason, the sliding window works well.

More concretely, since we are working with audio data (typically PLPs or MFCCs),

what we are doing here is removing the average amplitude (over a window) from each

frequency bin in our feature vector. In the below equations 𝑥𝑡 represents the feature

vector at time 𝑡; 𝐷 allows for a lag in processing time for on-line processing (i.e.

𝐷 == 𝑑𝑒𝑙𝑎𝑦); 𝑖 indexes the 𝑖𝑡ℎ dimesion of the feature vector. The original equations

and explanations can be found in ([154], p. 136).

55



𝑥̂𝑡−𝐷(𝑖) =
𝑥𝑡−𝐷(𝑖)− 𝜇𝑡(𝑖)

𝜎𝑡(𝑖)

𝜇𝑡(𝑖) =
1

𝑁

𝑁∑︁
𝑗=1

𝑥𝑗(𝑖)

𝜎𝑡(𝑖) =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑗=1

(︁
𝑥𝑗(𝑖)− 𝜇𝑡(𝑖)

)︁2

3.2.2 Vocal Tract Length Normalization

Vocal Tract Length Normalization (VTLN) is a feature normalization approach inspired

by the anatomy of the human body. [29, 44, 80, 89] The basic idea is that human

speech passes through an individual human’s vocal tract, and the vocal tract imparts

itself into the acoustics of the final signal. This is precisely why we humans can easily

recognize our mother’s voice over the phone without any introduction. This signal,

however, is distracting for a statistical acoustic model. The human vocal tract adds

noise to the acoustic signal, distorting the locations of formant frequencies in phonetic

sounds. VTLN attempts to estimate the vocal tract of the speaker, and use it to warp

the signal into a more speaker-independent version of itself.

3.3 Feature-based Adaptation

3.3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) helps accomplish two concurrent tasks: (1)

compress data, and (2) enhance data separability for classification.[63] It’s a technique

that helps us discriminate the data via a linear transform (hence the name LDA).

Whether we’re using GMMs or DNNs in speech recognition, at the end of the day we
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have labels for our data which represent classes in some feature space. It is probably

the case that our classes are not easily separable in their original space (one reason

why ASR is a hard task), but LDA will help us take those features and project them

into a lower-dimensional space where we can distinguish phones better.

LDA is often compared to Principal Component Analysis (PCA), given that both

techniques seek to find a linear projection of data into lower-dimensional space, where

the interesting characteristics of the data are enhanced, and uninformative aspects

of the data are lost.[18, 17] The main difference between these two techniques is

that LDA makes use of labels whereas PCA does not. PCA merely extracts the

features dimensions where variability is the highest. LDA, on the other hand, identifies

dimensions where inter-class variability is high and intra-class variability is low.

LDA makes reference to two pieces of information: (1) feature vectors and (2)

their labels. It may seem like we are only accessing data, and as such LDA should

not be considered adaptation. However, we should remember that labels for the

data are assigned during training, and they depend on the architecture of our model.

Standard ASR training begins with only utterances and their text transcriptions. In

order to acquire frame-level labels for our phonemes, we need to generate the labels

ourselves. Monophone training gives us some intermediate labels, which are then used

to bootstrap a triphone system. The decision tree of the triphone system is what

determines the number and kind of labels we eventually end up with. As such, our

labels are a direct consequence of our training procedure and model architecture, and

therefore LDA can be classified as feature adaptation because we implicitly make

reference to our original model.

Heteroscedastic Discriminant Analysis (HDA), addresses the one shortcoming of

standard LDA.[86] Standard LDA assumes that all classes have equal variance, but in

reality this is rarely the case. HDA makes provisions to account for unequal variance

between classes (aka. heteroscedasticity).
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3.4 Model-based Adaptation

3.4.1 Maximum Likelihood Linear Regression

Maximum Likelihood Linear Regression (MLLR) trains a transformation of model

parameters such that the adapted model maximizes the likelihood of some new data.[90]

Given a previously trained acoustic model, MLLR takes all the parameters from all the

Gaussians and finds a transformation of them which is more appropriate for some new

data. In the formula below, 𝜂 are the parameters being learned for the transformation

(i.e. adaptation) matrix. Our existing Gaussian model parameters are 𝜃. We are

not learning new model parameters, but instead the best transformation of those

parameters for our new data 𝑋.

𝜂𝑀𝐿𝐿𝑅 = argmax
𝜂

𝑝(𝑋|𝜃, 𝜂)

MLLR is especially useful when little adaptation data is available, because it does

not require data from each phoneme (i.e. triphone) to make an update. If a GMM

Acoustic Model has been trained for some large dataset, and we want to use MLLR

to adapt that model to some new, smaller data set, the chances are that the smaller

dataset has fewer seen triphones than in the original dataset. More concretely, since

triphones are modeled as a collection of GMM components, let’s say that we have two

Gaussian components 𝑎 and 𝑏 with two mean vectors 𝜇𝑎 and 𝜇𝑏. In MLLR, we don’t

need any new data 𝑥𝑖 to be assigned to component 𝑎 in order to make an update to

𝜇𝑎. Rather, using some assumption about how components are related to each other,

MLLR will train an update for a group of components at once. As long as at least

one component in that group has new data, the transformation for all components

will be trained. If the components 𝑎 and 𝑏 belong to the same cluster, then 𝑎 will be

updated according to the transformation trained on 𝑏. Intuitively, we can think of

this as an update rule stating: If you don’t have new data to update a certain part of

the model, look for a similar part of the model, and use that update information. The

most extreme case of MLLR is when all components share a single transformation

matrix. While this may seem odd, for certain noise or channel conditions a single
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transformation may actually be effective for adaptation to a new environment. The

noise inside a moving car will be fairly stable throughout a phone-call, so training one

global transformation to a new environment is justified.

With more adaptation data, more informed regression classes for clusters of

components can be learned via a decision tree. The intuition behind this decision

tree is that similar sounds will be transformed similarly. For example, a single

transformation may be trained for vowels, another transformation may be trained for

consonants, and another for noise/silence. Another advantage of MLLR is that instead

of directly adapting model parameters, we are merely estimating a transformation

matrix. This means we have fewer parameters to estimate and store, and as such,

we can save to disk multiple transformations (speaker, noise, channel) for a given

model. A company wishing to customize an Acoustic Model to every user will have a

much easier time using MLLR compared to completely retraining model parameters,

because every user will only need a new adaptation matrix, as opposed to an entirely

new model.

MLLR uses Maximum Likelihood Estimation to train a linear regression, where

the linear regression is formulated as an affine transform. In the below equation, 𝐴 is

a 𝑑× 𝑑 matrix, and 𝑑 is the number of dimensions in a single Gaussian component of

a GMM of a state, and 𝜇 is the mean vector of that component, such that 𝜇 ∈ ℛ𝑑.

𝜇̂ = 𝐴𝜇+ 𝑏

To make the math easier, we encode the weights and biases of the transformation

into a single matrix:

𝜇 = W𝜉

In this formulation, 𝜉 is an extended feature vector:
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𝜉 = [1𝜇⊤]⊤ = [1, 𝜇1, 𝜇2 . . . 𝜇𝑑]
⊤

where 𝑑 is the dimensionality of the mean vector of a single Gaussian component in

our model (and also of course, our original 𝑑-dimensional feature vectors). To return

a 𝑑 dimensional mean vector for our Gaussians, W is a 𝑑× (𝑑+ 1) matrix,

W = [bA]

Instead of just training one global transformation W, you can train a set of trans-

formations {W1,W2,W3 . . .W𝑛} for 𝑛 subsets of the acoustic model. To accomplish

this, typically a decision tree is used to find states which are likely to be transformed in

a similar way. The following is the transformation matrix for Full-Covariance MLLR,

with a padded Gaussian mean vector:

W =

⎡⎢⎢⎢⎣
𝑤1,1 . . . 𝑤1,(𝑑+1)

... . . . ...

𝑤𝑑,1 . . . 𝑤𝑑,(𝑑+1)

⎤⎥⎥⎥⎦𝜇 =

⎡⎢⎢⎢⎢⎢⎢⎣
1

𝜇1

...

𝜇𝑑

⎤⎥⎥⎥⎥⎥⎥⎦
The parameters of the transforms are updated in order to maximize the likelihood

of the new data given the transformed GMMs. If we use GMMs with diagonal

covariance matrices there is a closed form solution to MLE, otherwise an iterative

procedure is required.

3.4.2 Maximum A Posteriori

Maximum A Posteriori (MAP) parameter estimation allows us to naturally use prior

knowledge in adapting existing model parameters to new data. [51] When we maximize
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the a posteriori distribution for a set of parameters 𝜃, given some new data 𝑋, using

Bayes Theorem we can explicitly use prior knowledge in the form of a prior 𝑝(𝜃). This

prior on 𝜃 can take many shapes and come from many different sources.

𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝(𝜃|𝑋)

= argmax
𝜃

𝑝(𝑋|𝜃) · 𝑝(𝜃)

Typically, in GMM Acoustic Model adaptation, MAP adaptation refers to the

case where 𝑝(𝜃) comes from some original model 𝜃𝑜𝑟𝑔 trained on some original data

set 𝑋𝑜𝑟𝑔. In speaker adaptation, for example, we may have some previous, speaker-

independent Acoustic Model 𝜃𝑜𝑟𝑔, and we wish to adapt that Acoustic Model to a new

speaker, via some new data 𝑋𝑛𝑒𝑤. Typically, the amount of data in 𝑋𝑛𝑒𝑤 is small,

and training a new model 𝜃𝑛𝑒𝑤 from scratch via standard MLE with 𝑋𝑛𝑒𝑤 will lead

to bad performance. The main intuition behind MAP adaptation is that we use (a)

our background knowledge 𝜃𝑜𝑟𝑔 in addition to (b) our new data 𝑋𝑛𝑒𝑤 to create a new

model 𝜃𝑛𝑒𝑤 which exploits information from both sources via Bayes Theorem.

In standard Maximum Likelihood Estimation (MLE) of GMM model parameters,

we estimate the means and (diagonal) covariances of our Gaussian probability density

functions as such:

𝜇MLE =

𝑁∑︀
𝑛=1

𝛾𝑛 · xn

𝑁∑︀
𝑛=1

𝛾𝑛

𝜎2
MLE =

𝑁∑︀
𝑛=1

𝛾𝑛

(︁
xn − 𝜇

)︁2

𝑁∑︀
𝑛=1

𝛾𝑛

Where 𝑁 is the number of training examples, xn represents the feature vector

framen, and 𝛾𝑛 is the probability of framen belonging to the current component

of the current state. In MAP adaptation, we take a similar approach to standard

MLE in estimating the means of a new, updated GMM. Crucially, when we have new
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adaptation data, we use the old GMM model parameters as a prior, and we use a

hyperparameter 𝜏 to control the influence of the prior on the new model parameters.

A desireable trait of MAP adaptation is that as the amount of adaptation data

increases, the influence of the prior fades away. This is accomplished by using a

hyperparameter weight 𝜏 .

𝜇MAP =
𝜏

𝜏 +𝑁𝑛𝑒𝑤

· 𝜇org +
𝑁𝑛𝑒𝑤

𝜏 +𝑁𝑛𝑒𝑤

· 𝜇new

As the amount of new data increases, the influence of the original model (𝜇org)

goes to zero.

lim
𝑁𝑛𝑒𝑤→∞

𝜏

𝜏 +𝑁𝑛𝑒𝑤

· 𝜇org = 0

Likewise, as the amount of new data increases, the influence of the new parameter

(𝜇new) approaches 100%.

lim
𝑁𝑛𝑒𝑤→∞

𝑁𝑛𝑒𝑤

𝜏 +𝑁𝑛𝑒𝑤

· 𝜇new = 𝜇new

Putting it in another way, a very desirable trait of MAP estimation is that as the

amount of new data tends to infinity, MAP tends to MLE. Intuitively, this translates

into: The more data we feed the model, the less we rely on prior biases.

lim
𝑛→∞

𝜏 · 𝜇𝑜𝑟𝑔 +
𝑁∑︀

𝑛=1

𝛾𝑛 · xn

𝜏 +
𝑁∑︀

𝑛=1

𝛾𝑛

=

𝑁∑︀
𝑛=1

𝛾𝑛 · xn

𝑁∑︀
𝑛=1

𝛾𝑛

The main problem with MAP is that adaptation only happens locally. That is, if

data for a certain phonetic label is not observed in the new data, the model of that

phonetic label will be just copied from the old parameters. Therefore, usually MAP is

good if you have a lot of data. Given that it’s easier to get data from a new noise

environment, MAP has seen more success in noise/channel adaptation compared to

speaker adaptation.
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3.4.3 i-vectors

I-vectors are the last traditional approach to solving the small-data problem I will

cover in this chapter. I-vectors help deal with new acoustic data (i.e. new speakers,

new background noise) that was never seen in training.

I-vectors are MAP-adjusted means from a speaker-independent GMM (i.e. a

Universal Background Model (UBM)) which has been trained on a large dataset of

speakers. I-vectors are appended to standard audio features (e.g. MFCCs) during

decoding. [133, 126, 116, 136] Given a UBM and utterances from a new speaker, the

UBM means are first adapted to those utterances via MAP estimation. Then, the

means of the MAP-adapted GMM (now speaker-specific) may be extracted and used

as a compact representation of how that speaker diverges from the norm (UBM).

As such, an i-vector is a compact, fixed-dimensional representation of an audio file.

I-vectors were initially used for speaker identification, and were only later integrated

into speech recognition. I-vectors are very convenient for speaker identification because

a single, averaged i-vector can be stored per speaker on disk.

Intuitively, i-vectors are useful in decoding because they allow the recognizer to

adjust for speaker-specific characteristics. For example, a 6-year-old child will have

certain vocal characteristics (i.e. Hz range, formant relations) which differ from adults.

We as humans can pretty reliably say when a voice is a child’s or adult’s, even in

another language. Knowing this information allows us to adjust our hearing to more

reliably identify phonemes spoken by children (and adults, elderly, other accents).

When we provide i-vectors at each time-step to a DNN classifier, we are effectively

providing this speaker-specific information so that the system can learn regularities in

different kinds of voices, and adjust it’s phoneme classification depending on them.

3.5 Conclusion

In understanding speech, there is a wealth of information we can exploit as humans.

We know if a recording was done over the phone or in a soundbooth, in a car or on

the factory floor. We can also make a good guess as to the gender, sex, age, physical
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health, and even socio-economic status of the speaker. We can also identify what

kind of accent the speaker has, and if they are happy or upset. All of these things,

and more, we can identify from an audio recording, but almost none of these are

directly useful when it comes to transcribing the speech of that speaker. As such,

audio recordings contain a lot of information we can safely ignore if our sole task

is to recognize which words were spoken. This chapter discussed the most common

approaches to model relevant information and ignore irrelevant information in audio

data. This becomes acutely relevant when there is a mis-match between training and

testing data.
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Chapter 4

An Overview of Multi-Task Learning

in Speech Recognition

4.1 Roadmap

In this overview of Multi-Task Learning in Automatic Speech Recognition (ASR),

we’re going to cover a lot of ground quickly. First, we’re going to define Multi-Task

Learning and walk through a very simple example from image recognition∗. Then,

once we have a base as to what Multi-Task Learning is and what constitutes a task,

we will move into a survey of the speech recognition literature.†

The literature survey focuses on acoustic modeling in particular. Speech Recog-

nition has a long history, but this overview is limited in scope to the Hybrid (i.e.

DNN-HMM) and End-to-End approaches. Both approaches involve training Deep

Neural Networks, and we will focus on how Multi-Task Learning has been used to train

them. We will divide up the literature along monolingual and multilingual models,

and then finally we will touch on Multi-Task Learning in other speech technologies

such as Speech Synthesis and Speaker Verification.

“Multi-Task Learning” denotes more than a model which can perform multiple

tasks at inference time. Multi-Task Learning can be useful even when there is just

∗Yes, there will be pictures of dogs!
†For a more complete overview of Multi-Task Learning itself, c.f. [128]
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one target task of interest. Especially with regards to small datasets, a Multi-Task

model can beat out a model which was trained to optimize the performance of just

one task. Moreover – as demonstrated in Chapters 5-7 – Multi-Task Learning can be

used even when there is one task explicitly labeled in the training data.

4.2 Introduction to Multi-Task Learning

4.2.1 Definition

Before we can define Multi-Task Learning, we first need to define what counts as a task.

Some researchers may define a task as a set of data and corresponding target labels

(i.e. a task is merely (𝑋, 𝑌 )). Other definitions may focus on the statistical function

that performs the mapping of data to targets (i.e. a task is the function 𝑓 : 𝑋 → 𝑌 ).

In order to be precise, in this overview a task is defined as the combination of data,

targets, and mapping function.

A task is the combination of:

1. Data: 𝑋, a sample of data from a certain domain

2. Targets: 𝑌 , a sample of targets from a certain domain

3. Mapping Function: 𝑓 : 𝑋 → 𝑌 , a function which maps data to targets

The targets can be distinct label categories represented by one-hot vectors (e.g.

classification labels), or they can be 𝑁 -dimensional continuous vectors (e.g. a target

for regression).‡

Given this definition of task, in this overview we define Multi-Task Learning as a

training procedure which updates model parameters such that the parameters optimize

‡In reality these two kinds of targets are the same with regards to training neural networks via
backpropagation. The targets for classification are just a special case of regression targets, where the
values in the vector are 1.0 or 0.0.
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performance on multiple tasks in parallel.§ At its core, Multi-Task Learning is an

approach to parameter estimation for statistical models [21, 19]. Even though we

use multiple tasks during training, we will produce only one model. A subset of the

model’s parameters will be task-specific, and another subset will be shared among

all tasks. Shared model parameters are updated according to the error signals of

all tasks, whereas task-specific parameters are updated according to the error signal

of only one task. It is important to note that a Multi-Task model will have both

task-dependent and task-independent parameters. The main intuition as to why the

Multi-Task approach works is the following: if tasks are related, they will rely on a

common underlying representation of the data. As such, learning related tasks together

will bias the shared parameters to encode robust, task-independent representations of

the data.

Given this definition of task and this definition of Multi-Task Learning, we can start

to think about the different ways in which a Multi-Task model can be trained. Probably

the most common Multi-Task use-case is the classification of a single dataset (𝑋) as

multiple sets of target labels (𝑌1, 𝑌2 . . . 𝑌𝑁). This model will perform mappings from

(𝑋) into each of the label spaces separately. Another approach is the classification of

multiple datasets sampled from various domains (𝑋1, 𝑋2 . . . 𝑋𝑁 ) as their own, dataset-

specific targets (𝑌1, 𝑌2 . . . 𝑌𝑁). Less commonly, it is possible to classify multiple

datasets using one super-set of labels. These different approaches are represented with

regards to vanilla feed-forward neural networks in Figure (4-1).

With regards to neural approaches (c.f. Figure (4-1)), Multi-Task models are

comprised of three component parts: (1) shared hidden layers which serve as a

task-independent feature extractor; (2) task-specific output layers which serve

as task-dependent classifiers or regressors; (3) task-specific input layers which

serve as feature transformations from domain-specific to domain-general representa-

tions. Neural Multi-Task models will always have some hidden layers shared among

§An exception to this is Multi-Task Adversarial Learning, in which performance on an auxiliary
task is encouraged to be as poor as possible. In domain adaptation, an example of this may be
forcing a neural net to be blind to the difference between domains. The Adverserial auxiliary task
would be classification of domain-type, and the weights would be updated in a way to increase error
as much as possible.
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(a) Multi-Label (b) Multi-Data (c) Multi-Label + Multi-Data

Figure 4-1: Possible Neural Multi-Task Architectures. Black layers are task-
independent layers, blue layers are task-dependent input layers, and red layers are
task-dependent output layers. These figures are modified versions of a figure from [71].

tasks. This view of a Multi-Task neural network highlights the intuition behind the

shared hidden layers - to encode robust representations of the input data.

With regards to domains in which we have very limited data (i.e. low-resource

environments), Multi-Task parameter estimation promises gains in performance which

do not require us to collect more in-domain data, as long as we can create new tasks.

In the common scenario where an engineer has access to only a small dataset, the

best way she could improve performance would be by collecting more data. However,

data collection takes time and money. This is the promise of Multi-Task Learning in

low-resource domains: if the engineer can create new tasks, then she does not need to

collect more data.

4.2.2 An Example

This section gives an example of a Multi-Task image recognition framework, where

we start with a single task, create a second task, and train a model to perform both

tasks. Starting with a single task, suppose we have the access to the following:

1. Data: 𝑋1, a collection of photographs of dogs from one camera

2. Targets: 𝑌1, a finite set of dog_breed labels (e.g. terrier, collie, rottweiler)
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3. Mapping Function: 𝑓1 : 𝑋1 → 𝑌1, a vanilla feedforward neural network which

returns a set of probabilities over labels of dog_breed to a given photograph

In order to create a new task, we either need to collect some data (𝑋2) from a new

domain, create new targets (𝑌2), or define a new mapping function (𝑓2 : 𝑋1 → 𝑌1).

Furthermore, we would like to create a related task, with the hopes of improving

performance on the original task. There’s several ways we can go about making a

new task. We could use the same set of labels (dog_breed), but a collect new set of

pictures from a different camera. We could try classifying each photograph according

to the size of the dog, which would mean we created new labels for our existing data.

In addition to our vanilla feed-forward network, we could use a convolutional neural

network as a mapping function and share some of the hidden layers between the two

networks.

Assuming we don’t want to collect more data and we don’t want to add a new

mapping function, the easiest way to create a new task is to create a new set of target

labels. Since we only had a single set of labels available (i.e. dog_breed), we can

manually add a new label to each photo (i.e. dog_size) by referencing an encyclopedia

of dogs.¶ So, we started with a single dataset of photos of dogs (𝑋1) and a single

set of classification labels (𝑌1) for the dog’s breed, and now we’ve added a new set of

labels (𝑌2) for a classification task of the dog’s size. A few training examples from our

training set (𝑋1, 𝑌1,𝑌2) may look like what we find in Figure (4-2).

Given this data and our two sets of labels, we can train a Multi-Task neural network

to perform classification of both label sets with the vanilla feed-forward architecture

shown in Figure (4-3). This model now has two task-specific output layers and two

task-specific penultimate layers. The input layer and following three hidden layers are

shared between both tasks. The shared parameters will be updated via the combined

error signal of both tasks.
¶This is an example of using domain or expert knowledge to create a new task, where the expert

knowledge is contained in the encyclopedia. One could also hire a dog expert to label the images
manually. Either way, we are exploiting some source of domain-specific knowledge (i.e. knowledge of
the physiology of different dog breeds).
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{rottweiler, large} {collie, large} {terrier, small}

Figure 4-2: Three pictures of dogs from our dataset (𝑋1), where each picture has been
labeled with separate targets: {dog_breed, dog_size}

Figure 4-3: Multi-Task DNN for classifying pictures of dogs according to both
dog_breed and dog_size. Any additional task by definition brings along with it
additional parameters, because a subset of model parameters must be task-specific.
Task-specific parameters for the new task of dog_size classification are shown in red.

This example came from image recognition, but now we will move onto to our

overview of Multi-Task Learning in Automatic Speech Recognition. As we will see in

what follows, researchers have trained Multi-Task Acoustic Models where the auxiliary

tasks involve a new data domain, a new label set, or even a new mapping function.
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4.3 Multi-Task Learning in ASR

The Multi-Task Learning discussed here deals with either acoustic modeling in Hybrid

(i.e. DNN-HMM) ASR, or it deals with End-to-End ASR.‖ The Acoustic Model

accepts as input a window of audio features (𝑋) and returns a posterior probability

distribution over phonetic targets (𝑌 ). The phonetic targets can be fine-grained

context-dependent units (e.g. triphones from a Hybrid model), or these targets may

be simply characters (e.g. as in End-to-End approaches). The following survey will

focus on how Multi-Task Learning has been used to train these acoustic models, with

a focus on the nature of the tasks themselves.

Past work in Multi-Task acoustic modeling for speech recognition can be split into

two broad categories, depending on whether data was used from multiple languages

or just one language. In this survey, we will refer to these two branches of research as

monolingual vs. multilingual approaches. Within each of those two branches, we find

sub-branches of research, depending on how the auxiliary tasks are crafted. These

major trends are shown in Figure (4-4), and will be discussed more in-depth below.

Within monolingual Multi-Task acoustic modeling we can identify two trends

in the literature. We find that researchers will either (1) predict some additional

linguistic representation of the input speech, or (2) explicitly model utterance-level

characteristics of the utterance. When using additional linguistic tasks for a single

language, each task is a phonetically relevant classification: predicting triphones vs.

predicting monophones vs. predicting graphemes [12, 135, 76, 24, 25, 148]. When

explicitly modeling utterance-specific characteristics, researchers either use adversarial

learning to force the model to “forget” channel, noise, and speaker characteristics, or

the extra task is a standard regression in order to pay extra attention to these features

[139, 137, 150, 132, 98, 142, 111, 53, 27, 170].

Within multilingual Multi-Task acoustic modeling we can also identify two main

veins of research: (1) using data from some source language(s) or (2) using a pre-

trained model from some source language(s). When using data from source languages,

‖In the traditional, Hybrid ASR approach (i.e. DNN Acoustic Model + N-gram language model),
there’s not a lot of room to use MTL when training the language model or the decoder.

71



Figure 4-4: Major Trends in the Research on Multi-Task Learning in Automatic
Speech Recognition. Here, “Recording Characteristics” refers to general characteristics
of the audio file (i.e. the “recording”), not the quality of the “recording” setup or
“recording” equipment.

most commonly we find researchers training a single neural network with multiple

output layers, where each output layer represents phonetic targets from a different

language [75, 71, 152, 99, 59, 97, 166, 123, 77, 142]. As such, these Acoustic Models

look like the prototype shown in Figure (4-1a). When using a pre-trained model from

some source language(s) we find researchers using the source model as either a teacher

or as a feature extractor for the target language [43, 32, 60, 84, 155, 165, 68]. The

source model extracts embeddings of the target speech, and then the embedding is

either used as the target for an auxiliary task or the embedding is concatenated to

the standard input as a kind of feature enhancement.
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4.3.1 Monolingual Multi-Task ASR

With regards to monolingual Multi-Task Learning in ASR, we find two major tracks

of research. The first approach is to find tasks (from the same language) which

are linguistically relevant to the main task [141, 135, 76, 12, 4, 24, 25, 23, 11, 143,

5, 114]. These studies define abstract phonetic categories (e.g. fricatives, liquids,

voiced consonants), and use those category labels as auxiliary tasks for frame-level

classification.

The second major track of research in monolingual Multi-Task acoustic modeling

involves explicit modeling of speaker, channel, or noise characteristics [139, 137, 150,

132, 98, 142, 111, 53, 27, 170]. These studies train the Acoustic Model to identify

these characteristics via an additional classification task, or they encourage the model

to ignore this information via adversarial learning, or they force the model to map

data from the input domain to another domain (e.g. from noisy audio → clean audio).

Abstract Linguistic Units as Tasks

All the studies in this section have in common the following: the model in question

learns an additional classification of the audio at the frame-level. That is, every chunk

of audio sent to the model will be mapped onto a standard ASR category such as a

triphone or a character in addition to an auxiliary mapping which has some linguistic

relevance. This linguistic mapping will typically be a broad phonetic class (think

vowel vs. consonant) of which the typical target (think triphone) is a member.

Good examples of defining additional auxiliary tasks via broad, abstract phonetic

categories for English can be found in [135] and later [76]. With regards to low-resource

languages, some researchers have created extra tasks using graphemes or a universal

phoneset as more abstract classes [24, 25, 23].

A less linguistic approach, but based on the exact same principle of using more

abstract classes as auxiliary targets, [12] used monophone alignments as auxiliary

targets for DNN-HMM acoustic modeling (in addition to the standard triphone

alignments). The authors observed that standard training on context-dependent
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triphones could easily lead to over-fitting on the training data. When monophones

were added as an extra task, they observed 3−10% relative improvements over baseline

systems. The intuition behind this approach is that two triphones belonging to the

same phoneme will be treated as completely unrelated classes in standard training

by backpropagation. As such, valuable, exploitable information is lost. In follow up

studies, [11, 143, 5] made the linguistic similarities among DNN output targets explicit

via linguistic phonetic concepts such as place, manner, and voicing as well as phonetic

context embeddings.

However, the benefits of using linguistic targets vary from study to study, and in

their survey paper, [114] concluded that “Using even broader phonetic classes (such as

plosive, fricative, nasal, . . .) is not efficient for MTL speech recognition”. In particular,

they were referring to the null findings from [141].

In a similar vein, Multi-Task Learning has been used in an End-to-End framework,

in an effort to encourage explicit learning of hierarchical structure of words and

phonemes. Oftentimes these hierarchical phonemic levels (e.g. phonemes vs. words)

are trained at different levels of the model itself [45, 131, 85, 148, 102]. Figure (4-5)

displays the approach taken in [131].

Figure 4-5: Multi-Task Hierarchical Architecture from Sanabria and Metze (2018)

All of these studies have in common the following: they encourage the model to

learn abstract linguistic knowledge which is not explicitly available in the standard
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targets. Whatever the standard target may be (e.g. triphones, graphemes, etc.)

the researchers in this section created abstract groupings of those labels, and used

those new groupings as an additional task. These new groupings (e.g. monophones,

sub-word units, etc) encourage the model to learn the set of underlying features (e.g.

voicing, place of articulation, etc.) which distinguish the main targets.

Regression on Better Features as New Task

Class labels are the most common output targets for an auxiliary task, but [111, 53,

27, 170] took an approach where they predicted de-noised versions of the input audio

from noisy observations (c.f. Figure (4-6)). The effect of this regression was that the

Acoustic Model cleaned and classified each input audio frame in real time.

Figure 4-6: Regression and Classification Neural Network Architecture from Giri et al.
(2015)

In a similar vein, [34] trained an Acoustic Model to classify standard senomes

targets as well as regress an input audio frame to bottleneck features of that same

frame. Bottleneck features are a compressed representation of the data which have

been trained on some other dataset or task — as such bottleneck features should

contain linguistic information. In a very early study, the authors in [96] predicted

enhanced audio frame features as an auxiliary task (along with the speaker’s gender).
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Extra Mapping Function as Extra Task

In End-to-End ASR, [82] created a Multi-Task model by adding a mapping function

(CTC) to an attention-based encoder-decoder model. This is an interesting approach

because the two mapping functions (CTC vs. attention) carry with them pros and

cons, and the authors demonstrate that the alignment power of the CTC approach

can be leveraged to help the attention-based model find good alignments faster. Along

similar lines, [95] trained an Acoustic Model to make use of both CTC and Sequential

Conditional Random Fields. These works did not create new labels or find new data,

but rather, they combined different alignment and classification techniques into one

model.

A famous example of monolingual MTL using multiple mapping functions is the

most common Kaldi implementation of the so-called “chain” model from [118]. This

implementation uses different output layers on a standard feed-forward model, one

output layer calculating standard Cross Entropy Loss, and the other calculating a

version of the Maximum Mutual Information Criterion.

New Domain as New Task

If we consider the different characteristics of each recording as domain memberships,

then any extra information we have access to (e.g. age, gender, location, noise

environment), can be framed as domain information, and this information can be

explicitly modeled in a Multi-Task model. Using a Multi-Task adversarial framework,

[139, 137, 150] taught an Acoustic Model to forget the differences between different

noise conditions, [132, 98] taught their model to forget speakers, and [142] taught the

model to forget accents.

In low-resource domains, it is often tempting to add data from a large, out-of-

domain dataset into the training set. However, if the domains are different enough a

mixed training set may hurt performance more than it helps. Multi-Task Learning lends

itself well to these multi-domain scenarios, allowing us to regulate how much influence

the out-of-domain data has over parameter estimation during training. Usually we
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will want to down-weight the gradient from a source domain task if the source dataset

is large or if the task is only somewhat related.

The researchers in [121] investigated the low-resource domain of Cantonese aphasic

speech. Using a small corpus of aphasic Cantonese speech in addition to two corpora

of read Cantonese speech, the researchers simply trained a Multi-Task model with

each corpus as its own task (i.e. data from each corpus as classified in its own output

layer). Similarly, in an effort to better model child-speech in a low-resource setting,

the authors in [146] created separate tasks for classification of child vs. adult speech,

in addition to standard phoneme classification.

Discussion of Monolingual Multi-Task Learning

In this section we’ve covered various examples of how researchers have incorporated

Multi-Task Learning into speech recognition using data from a single language. Two

major threads of work can be identified: (1) the use of abstract linguistic features as

additional tasks, or (2) the use of speaker and other recording information as an extra

task.

With regards to the first track of work, researchers have created abstract linguistic

target labels by defining linguistic categories by hand, by referring to the traditional

phonetic decision tree, or by automatically finding relevant sub-word parts. Perfor-

mance improvements with this approach have been found to be larger when working

with small datasets [11, 23]. The intuition behind this line of work is the following:

Forcing a model to classify input speech into broad linguistic classes should encourage

the model to learn a set of underlying phonetic features which are useful for the main

classification task.

A discriminative Acoustic Model trained on standard output targets (e.g. triphones,

characters) is trained to learn that each target is maximally different from every other

target. The label-space at the output layer is N-dimensional, and every class (i.e.

phonetic category) occupies a corner of that N-dimensional space. this means that

classes are learned to be maximally distinctive. In reality, we know that some of these

targets are more similar than others, but the model does not know that. Taking the

77



example of context-dependent triphones, the Acoustic Model does not have access to

the knowledge that an [a] surrounded by [t]’s is the same vowel as an [a] surrounded

by [d]’s. In fact, these two [a]’s are treated as if they belong to completely different

classes. It is obvious to humans that two flavors of [a] are more similar to each other

than an [a] is similar to an [f]. However, the output layer of the neural net does

not encode these nuances. Discriminative training on triphone targets will loose the

information that some triphones are more similar than others. One way to get that

information back is to explicitly teach the model that two [a] triphones belong to the

same abstract class. This is the general intuition behind this first track of monolingual

Multi-Task work in speech recognition.

The second track of monolingual Multi-Task acoustic modeling involves explicit

modeling of speaker, noise, and other recording characteristics via an auxiliary task.

While all of these variables are extra-linguistic, studies have shown that either paying

extra attention to them (via an auxiliary classification task) or completely ignoring

them (via adversarial learning) can improve overall model performance in terms of

Word Error Rate. This is a somewhat puzzling finding. Learning speaker information

[96, 26] can be useful, but also forgetting speaker information [132, 98] can be useful.

If we think of why this may be the case, we can get a little help from latent variable

theory. If we think of any recording speech as an observation that has been generated

by multiple underlying variables, we can define some variables which generated the

audio, such as (1) the words that were said, (2) the speaker, (3) the environmental

noise conditions, (4) the acoustics of the recording location, and many, many others.

These first four factors are undoubtedly influencers in the acoustic properties of the

observed recording. If we know that speaker characteristics and environmental noise

had an influence on the audio, then we should either explicitly model them or try to

remove them altogether. Both approaches show improvement over a baseline which

chooses to not model this extra information at all, but as discovered in [1], if the

dataset is large enough, the relative improvements are minor.
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4.3.2 Multilingual Multi-Task ASR

Multilingual Multi-Task ASR can be split into two main veins, depending on whether

(1) the data from a source language is used or (2) a trained model from the source

language is used. We find that the first approach is more common, and researchers

will train Acoustic Models (or End-to-End models) with multiple, task-dependent

output layers (i.e. one output layer for each language), and use the data from all

languages in parameter estimation. These models typically share the input layer and

all hidden layers among tasks, creating a kind of language-universal feature extractor.

This approach has also been extended from multiple languages to multiple accents

and dialects. The second vein of multilingual Multi-Task Learning involves using

an Acoustic Model from one language as a teacher to train an Acoustic Model from

some target language. Most commonly, this source model can be used to generate

phoneme-like alignments on the target language data, which are in turn used as targets

in an auxiliary task. More often than not, we find multilingual Multi-Task approaches

used in a low-resource setting.

Multiple Languages as Multiple Tasks

The earliest examples of Multi-Task Learning with multiple languages can be found in

[75] and [71] (c.f. Figure 4-7). These studies focused on improving performance on all

languages found in the training set, not just one target language. Every language was

sampled to the same audio features, and as such the neural networks only required

one input layer. However, the network was trained to classify each language using

language-specific phoneme targets. Taking this line of research into the world of

End-to-End speech recognition, [33] showed that a CTC model trained on multiple

languages, and then tuned to one specific language can improve performance over a

model trained on that one language in a low-resource setting.

In a similar vein of work, instead of optimizing performance on all languages

present in the training set, researchers have aimed to perform best on one particular

target language. See [156] for a survey of advances in this area.
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Figure 4-7: Multilingual Multi-Task Acoustic Model Architecture from Huang et al.
(2013)

Addressing the use-case where audio is available for a target language, but native-

speaker transcribers are not easy to find, [41] employed non-native speakers to tran-

scribe a target language into non-sense words, according to how they perceived the

language. Using these non-native transcriptions in addition to a small set of native-

speaker transcripts, the authors trained a Multi-Task model to predict phonemes from

both native or non-native transcripts. The intuition as to why this approach works

is that non-native speakers will perceive sounds from a foreign language using their

native phonemic system, and enough overlap should exist between the two languages

to help train the acoustic model.

In the relatively new field of spoken language translation, where speech from one

language is mapped directly to a text translation in a second language, the researchers

in [159, 3] created multiple auxiliary tasks by either recognizing the speech of the

source language (i.e. standard ASR), or by translating the source language into one

or more different languages.
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Multiple Accents as Multiple Tasks

In a vein of research which belongs somewhere between monolingual and multilingual

speech recognition, the authors in [166, 123, 77, 142] used Multi-Task Learning to

perform multi-accent speech recognition. The researchers in [166] trained a model

to recognize English, with separate output layers for British English vs. American

English. These two tasks were trained in parallel with a third task, accent identification.

Combining all three tasks led to optimal output (c.f. Figure 4-8). The authors in [123]

recognized phonemes of different English accents at an intermediate hidden layer, and

then accent-agnostic graphemes at the output layer.

Figure 4-8: Multi-Accent Deep Neural Network Architecture from Yang et al. (2018)

Multilingual Model as Feature Extractor

So-called bottleneck features have also been developed to aid in low-resource acoustic

modeling, which often incorporate Multi-Task Learning. These bottleneck features are

activations from a condensed hidden layer in a multilingual acoustic model. First a

multilingual Acoustic Model is trained, and then data from a new language is passed

through this DNN, and the bottleneck activations are appended as additional features

to the original audio [43, 32, 60, 84, 155, 165]. In this way, a kind of universal feature

extractor is trained on a large multilingual dataset. The bottleneck features themselves

are the product of Multi-Task Learning.
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Source Language Model as Teacher

Instead of using data from multiple languages, it is possible to use the predictions

from a pre-trained source model as targets in an auxiliary task. In this way, knowledge

located in the source dataset is transferred indirectly via a source model, as opposed

to directly from the dataset itself.

In a very recent approach, [68] trained a classifier on a well-resourced language

to identify acoustic landmarks, and then used that well-resourced model to identify

acoustic landmarks in a low-resourced language. Those newly discovered acoustic

landmarks were then used as targets in an auxiliary task. This approach can be

thought of as a kind of Multi-Task Student-Teacher (c.f. [160]) approach, where we

“distill” (c.f. [72]) knowledge from one (larger) model to another via an auxiliary task.

Discussion of Multilingual Multi-Task Learning

Surveying the literature of Multi-Task Learning in multilingual speech recognition, we

can identify some common findings among studies. Firstly, we observe positive effects

of pooling of as many languages as possible, even when the languages are completely

unrelated. This pooling of unrelated languages may seem strange at first - why should

languages as different as English and Mandarin have anything in common? However,

abstracting away from the linguistic peculiarities of each language, all languages share

some common traits.

All spoken languages are produced with human lungs, human mouths, and human

vocal tracts. This means that all languages are produced in an acoustic space

constrained by the anatomy of the human body. If we can bias a model to search for

relevant patterns only within this constrained space, then we should expect the model

to learn useful representations faster. Likewise, the model should be less likely to learn

irrelevant correlated information about environmental noise which occurs outside this

humanly-producible acoustic space. This is one intuition as to why the combination

of unrelated languages is helpful: any extra language will add inductive bias for the

relevant search space of human speech sounds.
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Nevertheless, these studies do show a tendency that closely related languages help

each other more than unrelated languages. Both [75, 33] concluded that improvement

was greater when the languages were more similar. However, they still found that

phonetically distinct languages were able to transfer useful bias to each other when a

large enough dataset was used for the source language. With regards to how much

Multi-Task Learning helps relative to size of the target language dataset, the authors

in [71, 75] saw larger relative improvements when the dataset for the target language

was smaller (but they still observed improvements on large datasets).

In conclusion, Multi-Task Learning for multilingual acoustic modeling yields largest

improvements when: (1) the dataset for the target language is small, (2) the auxiliary

language is closely related, and (3) the auxiliary language dataset is large.

4.3.3 Multi-Task Learning in Other Speech Technologies

In addition to Automatic Speech Recognition, Multi-Task Learning has found its way

into other speech technologies. The use of Multi-Task Learning is less established in

the following speech technology fields, and as such we find a very interesting mix of

different applications and approaches.

Speech Synthesis

Working on speech synthesis, the research team in [74] used Multi-Task Learning to

train neural speech synthesis systems for a single language. These models predicted

both the acoustic features (spectral envelope) as well as log amplitude of the output

speech. Additionally, these researchers recombined the outputs of both tasks to

improve the quality of the final synthesized speech. In a similar vein, authors in [163]

employed Multi-Task Learning of vocoder parameters and a perceptual representation

of speech (along with bottleneck features) to train a deep neural network for speech

synthesis. Working with input features which are not speech or text, but rather

ultrasonic images of tongue contours, the authors in [149] trained a model to perform

both phoneme classification as well as regression on the spectral parameters of a
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vocoder, leading to better performance on both tasks. Recently, in their work on

modeling the raw audio waveform, the authors in [61] trained their original WaveNet

model to predict frame-level vocoder features as a secondary task.

Speech Emotion Recognition

Working on emotion recognition from speech, [110] demonstrate that a model can

be used to identify multiple (believed to be orthogonal) emotions as separate tasks.

The authors in [87] take an emotion recognition task which is typically a regression,

and discover new, discrete targets (via k-means clustering) to use as targets in later

auxiliary tasks. Using classification of “gender” and “naturalness” as auxiliary tasks,

[81] also found improvements in spoken emotion recognition via Multi-Task training.

Recently, the authors in [93] trained a model to predict the first and second most

salient emotions felt by the evaluator.

Speaker Verification

With regards to speaker verification, the authors in [92] used phoneme classification

as an auxiliary task, and the authors in [40] trained speaker embeddings by jointly

optimizing (1) a GAN to distinguish speech from non-speech and (2) a speaker

classifier.

Combing both speech recognition and speaker verification, [26] trained an Acoustic

Model to perform both tasks and found improvement. In an adversarial framework,

[157] taught their model to forget the differences between domains in parallel to

identifying speakers.

Miscellaneous Speech Applications

Extending the work from Multi-Task speech recognition to Key-Word Spotting, the

researchers in [109] combined parameter-copying and MTL. They first took an Acous-

tic Model from large-vocabulary English recognition task, re-initialized the weights

immediately proceeding the output layer, and retrained with two output layers, one
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layer predicting only the phonemes in the Key-Word of interest, and another layer

predicting senomes from the large vocabulary task.

To predict turn-taking behavior in conversation, the authors in [67] trained a model

to jointly predict backchannelling and use of filler words.

Predicting the severity of speech impairment (i.e. dysarthia) in the speech of

patients with Parkinson’s disorder, the researchers in [153] trained a model to predict

the level of impairment in various articulators (e.g. lips, tongue, larynx, etc.) as

multiple tasks.

The researchers in [164] trained a model to both separate speech (from a multi-

speaker monaural signal) in addition to an auxiliary task of classifying every audio

frame as single-speaker vs. multi-speaker vs. no-speaker.

The researchers in [69] trained a model to both localize speech sources as well as

classify incoming audio as speech vs. non-speech.

4.4 Conclusion

Multi-Task Learning is a technique for adding inductive bias during parameter esti-

mation via the learning of auxiliary tasks. In order for Multi-Task Learning to work

well, related tasks must be available for some given dataset.

In this survey we’ve discussed the main veins of work in speech recognition, and

also applications in other speech technologies. With regards to speech recognition,

we categorized Multi-Task approaches as being either multilingual or monolingual.

Multilingual approaches exploit bias from one or more source language by either using

a source dataset during training or by using predictions of a pre-trained source model.

Monolingual approaches, on the other hand, use either abstract linguistic features

at the acoustic frame level or general characteristics of the recording itself during

training. All approaches involve the updating of task-dependent and task-independent

parameters. We find it is often the case that Multi-Task Learning is applied to

low-resource scenarios, where bias from related tasks can be crucial for successful

model training.
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Chapter 5

Multi-Task Acoustic Modeling via

Linguistic Categories

5.1 Introduction

The current study investigates integrating auxiliary tasks into Multi-Task Acoustic

Model training, where the tasks are hand-crafted by an expert linguist. This approach

involves manipulation of a stage in the ASR pipeline: the phonetic decision tree [169].

The decision tree creates labeled data for the DNN acoustic model, and encodes

contextual information about the data. This information is domain and language-

specific, and becomes more fine-grained further down the tree (cf. Figure (5-1)).

Figure 5-1: Standard Phonetic Tree Label Abstractions

The labels created by the decision tree (i.e. triphones) encode information which is
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very specific to the source domain (or language), and may not be the best representation

of the data for an auxiliary task which leads to better generalization or language-

transfer. Nodes closer to the roots of the tree represent more abstract levels of the

data, and therefore encode more language-general information. However, there is

a hard limit to the level of abstraction we can reach working with the traditional

phonetic decision tree. The most abstract information is found at the roots, which

in ASR terms is the monophone (i.e. the phoneme). There do exist more abstract

representations of human speech than isolated phonemes, but the standard phonetic

tree roots don’t go that deep.

5.1.1 Linguistic Features

According to linguistic theory, phonemes are not isolated units, but rather a bundle of

features such as vocal cord vibration, tongue placement, and lip rounding. Speech

sounds can be modeled more abstractly than phonemes if we use these more basic

phonetic features as classification targets. For example, the distinct phonemes [d]

and [t] share all features except for one: the timing of vocal cord vibration. If we

force a DNN classifier to recognize the overlapping features in these two phonemes,

we bias the DNN to learn more basic linguistic abstractions. As such, the linguistic

auxiliary tasks in this dissertation can be viewed as adding structure into phonetic

trees above the level of the phoneme as in Figure (5-2).

These linguistically inspired auxiliary tasks generate targets which are defined

by asking questions about higher level feature bundles instead of phoneme identity.

Decision trees are still generated in the traditional Kaldi pipeline, but a split in the

tree branches is made along questions such as: Is the feature bundle to the right a

[dental-plosive]? instead of traditional questions such as: Is the phoneme to the left a

[k]?

Past research in this area created tasks by predicting each linguistic feature in

isolation.[141] This is like taking a 3-dimensional label [x,y,z], and predicting [x]

and [y] and [z] as additional tasks. The problem with this approach for human

speech is that the predictive power of any one dimension is very weak. In the following,
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Figure 5-2: Higher Label Abstractions via Linguistics

I create tasks by removing one dimension for each task, projecting into N-1-dimensional

spaces. That is, instead of [x,y,z] → [x] and [y] and [z], I projected [x,y,z]

→ [x,y] and [y,z] and [x,z]. These N-1-dimensional spaces have more predictive

power, and also force the net to learn the importance of each dimension.

The following experiments generate labels for each data point by collapsing the

standard phoneme labels along one of three linguistic dimensions. The three dimensions

are:

1. Place of Articulation

2. Manner of Articulation

3. Vocal Cord Vibration

These feature dimensions are represented in the International Phonetic Alphabet

(Figure (5-3)) as columns, rows, and cell partitions. Place of articulation is represented

via columns, manner of articulation is represented via rows, and voicing information

is inside the cells of the table, where a symbol aligned to the left is voiceless and a

symbol to the right is voiced.
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Figure 5-3: International Phonetic Alphabet (2015)

In order to generate a new task, all information from one dimension is removed from

the phonetic dictionary. A task defined with labels from collapsed targets therefore has

no explicit access to the missing feature dimension. By collapsing the IPA columns,

we remove information about place of articulation. By collapsing the rows, we remove

information about manner of articulation. By collapsing each cell’s internal categories

(such that there is no left vs right distinction), we remove information about voicing.

For example, after removing voicing information, the phonemes [p] and [b] merge

into one phoneme (i.e. a bilabial plosive). Likewise, the phonemes [t] and [d] would

merge into one phoneme (i.e. an alveolar plosive). After removing information about

place of articulation, all the phonemes in the Nasal row would merge into one phoneme

(i.e. a voiced nasal). The phonemes in the Plosive row would be merged into two new

categories (i.e. voiced plosives or un-voiced plosives). More details of these operations

are presented below (c.f. Figures (5-5,5-6,5-8).

5.2 Training Procedure

The training procedure contains two logical steps:

1. Generate multiple sets of labels (i.e. different tasks).
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2. Train Acoustic Model via Multi-Task Learning with the new labels.

5.2.1 Generate Alignments

In order to generate new labels for our data, we need to first train GMM acoustic

models. There are many components to the GMM training pipeline, but the following

experiments make a change to only one part of the pipeline: the phonetic dictionary

(which dictates the questions available to the phonetic decision tree). GMM Acoustic

Models are trained as outlined in Chapter (2), and as such the reader can reference

that information for the entire training pipeline. Here I will go into detail on the

changes made to the phonetic dictionary, which allow us to infuse abstract linguistic

knowledge into the training process, resulting in linguistically informed training labels

for our Multi-Task Learning later on.

The phonetic dictionary defines the pronunciation of each word in terms of a

phoneme set. An excerpt from the actual phonetic dictionary used to train Librispeech

is displayed in Figure (5-4). This phonetic dictionary file is two columns wide, and

as many rows as possible pronunciations of words.∗ The written forms of words are

located on the left and their pronunciations on the right. The pronunciations are

made up of the phoneme set decided by the researcher. For well-resourced languages

there exist standard phoneme sets and phonetic dictionaries, such as the CMUDict

for American English (used in this study). [158]

ABANDON AH0 B AE1 N D AH0 N
ABANDONED AH0 B AE1 N D AH0 N D
ABBEY AE1 B IY0
ABBOT AE1 B AH0 T

Figure 5-4: Standard American English Lexicon.

For each linguistically defined label set, a new phonetic dictionary file was created

by collapsing phonemes along some dimension. Figure (5-5) displays a phonetic

∗The number of rows may be greater than the number of words, because one word may have two
or more possible pronunciations.
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dictionary collapsed on voicing; the distinction between T and D is lost.

ABANDON AH0 P AE1 N T AH0 N
ABANDONED AH0 P AE1 N T AH0 N T
ABBEY AE1 P IY0
ABBOT AE1 P AH0 T

Figure 5-5: Lexicon without voicing information.

The collapsing procedure is performed on American English, but can be easily

extended to any new language (given knowledge of the language’s phonology). The

specifics of how the lexicons were modified for each task are discussed below. Given

each new phonetic dictionary (i.e. new phoneme set) a GMM-HMM system was

trained and used to align the new labels to the training data.

The GMM-HMM training procedure was very standard. Monophones were trained

from a flat-start and aligned to the training data iteratively over 25 iterations via the

Baum-Welch algorithm. These monophones were allotted a total of 1,000 possible

Gaussian components. Given the alignments from the monophone labels, a context-

dependent triphone system was trained over another 25 iterations of Baum-Welch

training. The splits in the phonetic decision tree were made not along phonemes (as is

standard), but along the newly defined feature bundles (i.e. collapsed phonemes). The

decision tree was allotted a total of 1,000 possible leaves and 2,000 possible Gaussian

components. The final alignments from the triphone system are then used as an

auxiliary task in the following Multi-Task Learning DNN training framework.

Voicing Auxiliary Task

Voicing information is removed from the data labels. The only remaining information

comes from place and manner. Figure (5-6) displays the phoneme categories which

are collapsed from the removal of voicing information.
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B P --> P bilabial plosives
CH JH --> CH alveo-palatal affricates
D T --> T alveolar plosives
DH TH --> TH interdental fricatives
F V --> F labio-dental fricatives
G K --> G velar plosives
S Z --> S alveolar fricatives
SH ZH --> SH alveo-palatal fricatives

Figure 5-6: Phonemes collapse after removal of voicing information.

Place Auxiliary Task

Place of articulation information is removed from the data labels. The only remaining

information comes from voicing and manner. Figure (5-7) displays the phoneme

categories which are collapsed from the removal of place information.

F TH SH S HH --> F voiceless fricatives
V DH Z ZH --> V voiced fricatives
P T K --> P voiceless plosives
B D G --> B voiced plosives
M N NG --> N voiced nasals
L R --> R voiced laterals
Y W --> Y voiced approximants

Figure 5-7: Phoneme-collapse after removal of place information.

Manner Auxiliary Task

Manner of articulation information is removed from the data labels. The only remaining

information comes from voicing and place. Figure (5-8) displays the phoneme categories

which are collapsed from the removal of manner information. I decided to make two

groups of voiced alveolars because collapsing all of them into one target has very little

phonetic justification.
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B M V W --> W voiced labials
P F --> P voiceless labials
D Z --> D voiced alveolar
N L R --> R voiced alveolar2
T S --> T voiceless alveolar
ZH JH --> JH voiced postalveolar
SH CH --> CH voiceless postalveolar
NG G --> G voiced velar

Figure 5-8: Phoneme-collapse after removal of manner information.

5.2.2 Train DNN Acoustic Model

Given the multiple sets of aligned audio data, a Deep Neural Network Acoustic Model

is trained via Multi-Task Learning to classify audio frames as various labels. For

example, given two sets of alignments of labels to data, a single DNN will classify

each training example as two separate targets. Training is performed via standard

Stochastic Gradient Descent. Below is an example of a DNN with two tasks. As

shown in Figure (5-9) left task represents standard labels and the right task represents

labels from collapsed phonemes (collapsed vocal cord vibration).

Figure 5-9: Multi-Task DNN Acoustic Model
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The DNNs in the current study have five hidden layers, 500 nodes per hidden layer,

and each task has its own output layer and penultimate output layer. The activations

at each layer are ReLU. Stochastic Gradient descent was used to update parameters

over two epochs of all the data.

5.3 Data

To measure how well the resulting Acoustic Models perform, I use a set of speech

corpora which exhibit some interesting differences between training and testing data.

These training and testing data will differ in either who the speaker is, or what

language is being spoken. The following table shows which data sets are used for

each audio condition (Table (5.1)). The data used all come from audiobooks, either

English language or Kyrgyz language. As such, the results allow us to safely exclude

speaking styles or noise conditions as cause of differences. Librispeech-A contains 4.86

hours of audio, and Librispeech-B contains 0.5 hours of audio (from two speakers not

represented in Librispeech-A).† Kyrgyz Audiobook contains 1.6 hours of audio.

Corpus
Train Test

Speaker LibriSpeech-A LibriSpeech-B
Language LibriSpeech-A Kyrgyz Audiobook

Table 5.1: Speech Corpora

5.4 Monolingual Experiments

Three sets of new labels are generated via the phonetic decision tree. The new tasks

(i.e. new triphone alignments) are added during training to the neural net Acoustic

Model as auxiliary tasks. The main task is always the same: English triphones. In

these low-resource, monolingual experiments, the goal is to improve generalization for
†LibriSpeech-A and LibriSpeech-B are both drawn from the Mini LibriSpeech corpus, which is

freely available at https://openslr.org/31/.
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unseen speakers. The intuition explored here is that higher-level acoustic features from

one speaker will generalize better to another speaker. During training, the multiple

tasks are trained in parallel, but at inference time, only the main task is used to decode

speech from new speakers. In the following, experiments are shown for auxiliary tasks

modeled as either monophones and triphones. The main task is always modeled as

triphones.

5.4.1 Results

Gaussian Model Analysis

Each set of labels is generated by a separate GMM system. As such, we can investigate

the performance of these individual Gaussian systems before we use the labels to train

the neural net acoustic model. These results are interesting because they demonstrate

how appropriate the new labels are for the end-task of speech recognition. Table (5.2)

shows the performance of each of these models on held out data from two speakers (i.e.

one man, one woman). All decoding was performed with the same unigram language

model trained on the transcripts of the data. A unigram is a very weak language

model, and as such the performance of the Acoustic Models is highlighted.

Baseline -Voicing -Place -Manner

%WER 51.53 55.90 66.85 69.74

Table 5.2: Gaussian Mixture Model Performance

As we can see, the original phoneme-based model performs the best of all with a

Word Error Rate of 51.53%. Even though this model has more individual phonemes,

it does not have more parameters than any other model. All models were allotted the

same number of triphones (i.e. the same number of leaves in the phonetic decision tree).

The differences in performance then, don’t come from model complexity but from the

predictive power of the newly defined dimensions. Furthermore, the performance of

the models does not correlate with the number of phonemes which were collapsed.

Specifically, the phoneme set was reduced by 8 when voicing was collapsed, by 11
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when manner was collapsed and by 15 when place was collapsed. Even though

more phonemes were collapsed by removing place information, those experiments

outperformed manner collapsing, where fewer phonemes were lost.

The best performing “linguist-crafted” GMM model had all voicing information

removed. This model could only rely on manner of articulation and place of articulation

information to assign labels. In isolation, these two dimensions are good predictors,

and this model experienced only a 4.37% decrease in accuracy compared to the baseline

(trained on traditional phonemes).

Multi-Task DNN Results

The results for the monolingual experiments are displayed in Table (5.3). The rows in

this table correspond to different label sets (i.e. different collapsings of the phonetic

dictionary), and the columns correspond to the representation of the auxiliary task

labels (triphones vs. monophones).

There are three ways we collapsed labels: removing voicing information from

the phonetic dictionary, removing place information from the phonetic dictionary,

or removing manner information from the phonetic dictionary. The results show

experiments where every possible combination of auxiliary tasks is added via Multi-

Task Learning.

We first add each task as a separate auxiliary task such that the DNN has two

output layers (main + aux) during training, yeilding three experiments. Next, we add

all possible combinations of any two tasks (main + aux1 + aux2), yeilding in three

more experiments. Finally, we append every available auxiliary task (main + aux1 +

aux2 + aux3), yeilding one more experiment. As such, below is presented a total of

seven experiments in addition to the Single Task Baseline (c.f. Table (5.3)).

The two columns in Table (5.3) correspond to Word Error Rates for either mono-

phones or triphones. Both monophones and triphones were investigated because

monophones are direct representations of the phonetic dictionary, while triphones

incorporate context. The monophones best represent the linguistic information from

the phonetic dictionary. The triphones are clustered algorithmicly, and as such may
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differ from the original linguistic features encoded in the phonetic dictionary.

WER%
Auxiliary Tasks Triphones Monophones

STL Baseline 41.67
Voice 41.16 42.36
Place 42.66 40.61
Manner 42.03 41.70
Voice + Place 42.90 41.49
Voice + Manner 42.45 42.66
Place + Manner 42.66 41.82
Voice + Manner + Place 42.42 42.72

Table 5.3: Model performance on speakers unseen during training. Results are
measured as percent Word Error Rate. All models were trained on the same 4.86
hours of Librispeech audio, and tested on the same two held out speakers. These
experiments illustrate the model’s ability to generalize to new speakers. Bolded values
indicate improvement over the baseline.

Starting with results from the triphone experiments (i.e. the left column), as

we can see in Table (5.3), the addition of most auxiliary tasks does not guarantee

improvement over the baseline Single-Task Learning model. Models with lower WERs

than the baseline are displayed in bold. Out of the seven experiments with triphones,

only one showed improvement over the baseline: removing voicing information from

the targets (i.e. .51% improvement). Both other auxiliary tasks (collapsed place and

collapsed manner) resulted in worse WER’s compared to the baseline. By adding any

two auxiliary tasks during training, performance dropped by about 1% compared to

the baseline. Combining all three auxiliary tasks dropped performance by 0.75%.

With regards to the addition of auxiliary tasks modeled as monophones (i.e. the

right column in Table (5.3)), we find two conditions which improve performance over

the baseline: (1) a 1.06% improvement by adding a task without place information,

and (2) a 0.18% improvement by adding two additional tasks (one task without place

and one task without voicing).

Overall, for both monophones and triphones, we do not observe the kind of

improvement we would expect from Multi-Task Learning with related tasks. All these

tasks are clearly related, and related tasks should lead to improvement on the main
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task. One reason these tasks may not be helping as much as we’d expect is the

following: the main task does not have priority in influence over the hidden weights.

Every iteration of backpropagation sends an update back through the shared hidden

layers. The amount of update depends on the magnitude of the gradient, and the

magnitude of the gradient depends on the difference between the activation of the final

layer of the neural network and the target vector. These target vectors are “one-hot”

vectors, and therefore, the activations are encouraged to produce a value of 1.0 for the

correct label, and values of 0.0 for all other labels. We can explicitly favor the main

task during gradient descent by adjusting the target one-hot vectors such that the

main task produces a larger gradient. In the following, all the auxiliary (i.e. non-main)

tasks are trained on one-hot vectors where the correct label has a value of 0.33 instead

of 1.0. This means that if the task predicts the correct label with a probability of 0.33,

no gradient will be sent through the weights as an update. The main task, however,

will continue to update weights, striving to achieve an activation of 1.0 for the target

label. The following results come from the exact same experimental setup as above,

but where each auxiliary task is down-weighted. The results for weighted-auxiliary

task experiments are shown in Table (5.4).

WER%
Auxiliary Tasks Triphones Monophones

STL Baseline 41.67
Voice 41.00 40.43
Place 41.37 41.46
Manner 40.43 41.34
Voice + Place 41.31 41.28
Voice + Manner 41.25 42.18
Place + Manner 42.03 42.48
Voice + Manner + Place 41.64 41.88

Table 5.4: Weighted Task Model performance on speakers unseen during training.
Results are measured as percent Word Error Rate. All auxiliary tasks were down-
weighted by 1/3, such that a training example from the main task had three times as
much influence over hidden layers during backprop compared to any other, auxiliary
task. These experiments illustrate the model’s ability to generalize to new speakers.
Bolded values indicate improvement over the baseline.

As you can see in comparison to the unweighted experiments in Table (5.3), by
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down-weighting the auxiliary tasks we see a general improvement in Word Error

Rates. All experiments in which a single auxiliary task was added improved over

the baseline. The two-auxiliary task and three-auxiliary task experiments did not

all improve over the baseline, but they did perform on average better than their

unweighted counterparts in Table (5.3). It may be the case that given the addition of

multiple auxiliary tasks, they should be down-weighted even more, such that their

combined influence does not interfere with the main task.

5.5 Multilingual Experiments

5.5.1 Results

Gaussian Model Analysis

In the multilingual experiments, there is only one set of labels trained for the target

language, Kyrgyz. All the collapsing of phonemes happens for the source language (i.e.

English) such that the source language is represented more abstractly to maximize

transfer to the target language.

The same GMM models from the monolingual experiments above were used to

generate labels for the English data. The Kyrgyz data comes from 1.6 hours of

audiobook recordings. The language model used in Kyrgyz decoding was trained on a

Wikipedia dump, and is a bigram model. The Kyrgyz GMM used to generate triphone

alignments produces a Word Error Rate of 57.17% on the held-out testing data.

Kyrgyz
Triphones

%WER 57.17

Table 5.5: Kyrgyz Gaussian Mixture Model Performance

Baseline -Voicing -Place -Manner

%WER 51.53 55.90 66.85 69.74

Table 5.6: LibriSpeech Gaussian Mixture Model Performance
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Multi-Task DNN Results

The results on Kyrgyz language held-out test data are shown in Table (5.7). These

results come from decoding using a neural network which predicts only Kyrgyz

triphones from audio. That is, only the main task is used in decoding. The additional

tasks, like above for the monolingual experiments, are only used during training to

update the shared hidden layers in parallel. There is one additional task here which

does not apply to the monolingual experiments: an auxiliary task of English phonemes.

The English phonemes are added as a kind of second baseline, because they test the

effects of adding specifically linguistic information via Multi-Task Learning, or just

the effects of adding a second language into training.

The rows in Table (5.7) represent different combinations of auxiliary tasks, and

the columns represent the level of source language labels (monophones or triphones).

The first set of results shown here trained Multi-Task neural networks where each task

was weighted equally. That is, all one-hot target labels aimed for a value of 1.0.

WER%
Auxiliary Tasks Triphones Monophones

STL Baseline 53.07
Phonemes 53.95 52.78
Voice 54.05 53.85
Place 55.22 53.95
Manner 53.37 53.27
Voice + Place 55.22 53.46
Voice + Manner 55.12 53.46
Place + Manner 55.51 53.66
Voice + Manner + Place 54.15 54.44

Table 5.7: Language Transfer experiments. Results are measured as percent Word
Error Rate. These experiments test the model’s ability to transfer useful bias from
English to Kyrgyz via shared hidden layers. The main task was 1.6 hours of Kyrgyz
audio. The auxiliary tasks all came from the English language (Mini Librispeech
corpus), and the labels were modeled via various linguistic concepts. Bolded values
indicate improvement over the baseline.

Only one experimental condition produced an improvement of 0.29% over the

baseline: standard English monophones. As above, this has to do with the relative

weighting of tasks. However the problem is worse here, because the source and target
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language come from uneven datasets. The target language (Kyrgyz) has a dataset

of 1.6 hours, whereas the English dataset is 4.8 hours long. This means that if every

target label has a one-hot vector with 1.0 as the target value, then the English dataset

exerts, for a single epoch, over three times as much influence during gradient descent

compared to the target task (Kyrgyz). When we down-weight the target vectors for

the auxiliary tasks (i.e. the English tasks), we see a very different picture in Table

(5.8).

WER%
Auxiliary Tasks Triphones Monophones

STL Baseline 53.07
Phonemes 51.80 51.61
Voice 52.39 53.46
Place 51.90 52.29
Manner 52.00 51.80
Voice + Place 52.68 52.78
Voice + Manner 51.22 51.32
Place + Manner 50.83 53.66
Voice + Manner + Place 52.78 52.39

Table 5.8: Weighted Task Language Transfer experiments. Results are measured
as percent Word Error Rate. These experiments test the model’s ability to transfer
useful bias from English to Kyrgyz via shared hidden layers. The main task was
1.6 hours of Kyrgyz audio. The auxiliary tasks all came from the English language
(Mini Librispeech corpus), and the labels were modeled via various linguistic concepts.
Bolded values indicate improvement over the baseline.

In these multi-lingual experiments where the auxiliary tasks are down-weighted,

we observe improvement in almost every case.

5.6 Conclusion

These results show that using linguistic features as targets for auxiliary tasks in

Multi-Task Learning can improve performance on the main task, and that the relative

weighting of tasks must be taken into consideration. Notably, we found that a linguistic

representation is better for language transfer from source to target language.
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Chapter 6

Multi-Task Acoustic Modeling via

Non-Linguistically Engineered Tasks

6.1 Introduction

Performance for a low-resource language on speech recognition can be improved by

adding training data from another, resource-rich language. In the Multi-Task Learning

(MTL) framework, data from a related source domain updates hidden layers in parallel

with the target task [20]. In ASR, the targets for this additional language have

typically been states of context-dependent triphones, defined by some tree clustering

algorithm [75, 71, 59].

MTL works in situations when tasks are related. For example, the two image

recognition tasks (1) find doors and (2) find doorknobs perform better when trained

together, because doorknobs are highly predictive of doors, and vice versa [20]. By

forcing a neural net to recognize both objects in the same image, the hidden layers

will be biased towards more generalizable representations of the data.

Doors and doorknobs are obviously related, but in general it is difficult to create

related tasks for a new classification problem. The current study investigates auxiliary

tasks which are not hand-crafted by an expert or human, but can be automatically

extracted from a stage in the traditional ASR pipeline (i.e. the phonetic decision

tree [169]). The decision tree creates labeled data for the DNN acoustic model, and
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encodes contextual information about the data. This information is language-specific,

and gets more fine-grained further down the tree.

The current research builds off the intuition that the labels created by the decision

tree (i.e. triphones) encode information which is very specific to the source language,

and may not be the best representation of the data for language-transfer. Nodes

closer to the roots of the tree represent more abstract levels of the data, and therefore

encode more language-general information. Given a phonetic decision tree in a source

language (English) the current study investigates more abstract data labels for MTL

transfer to a target language (Kyrgyz).

In addition to phonetic detail in the training labels, the relative weighting of the

source task vs. target task during backprop affects performance outcomes. If tasks

come from separate datasets, the task with the biggest dataset will have most influence

during backprop. To avoid an auxiliary task with a large dataset dominating the target

task in training, we can weight training labels, such that more important examples

will have a larger gradient.

6.2 Contributions of this Chapter

The following chapter investigates low-resource multilingual Acoustic Model training

with Multi-Task Learning (MTL) for Automatic Speech Recognition. The main

question of this research is: What is the best way to represent a source language with

MTL to improve performance on the target language? The two parameters of interest

are (1) the level of detail at which the source language is modeled, and (2) the relative

weighting of source vs. target languages during backprop.

Results show that when the source task is weighted higher than the target task, a

more detailed task representation (i.e. the triphone) leads to better performance on

the target language. On the other hand, when the source task is weighted lower, then

a less detailed level of source task representation (i.e. the monophone) is better for

performance in the target language. Given all levels of detail in the source task, a

1-to-1 weighting ratio of source-to-target leads to best results on average. After an
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analysis of performance on training and validation data, we see that less detailed (i.e.

more simple) tasks are easier to learn, and as such, they quickly settle into a good

local minimum, and are less likely to budge. However, this local minimum may not

be best for the target task.

The target language is Kyrgyz, and the source language is English. Both data come

from audiobooks, English from Mini LibriSpeech [108] and Kyrgyz from the Bizdin.kg

project. Kyrgyz is a Turkic language spoken mostly in Central Asia, where it has

official language status in the Kyrgyz Republic. Kyrgyz is spoken by approximately 5

million people world-wide .

6.3 Background

Past work on MTL for acoustic modeling can be divided into two main categories:

monolingual vs. multilingual. Multilingual MTL acoustic modeling involves training a

single DNN with multiple output layers, where each output layer represents triphones

from one language. Monolingual MTL acoustic modeling involves designing multiple

tasks for a single language, where each task is linguistically relevant (e.g. triphones

vs. monophones vs graphemes). Multilingual MTL aims for domain transfer, but

monolingual MTL aims for robust generalization from the training data.

The earliest examples of MTL with multiple languages can be found in [75] and

[71]. They were interested in improving performance on all languages, not just one

target language. More recently, [59] studied the effect of adding data from a single,

well-resourced language to some low-resourced language.

With regards to monolingual MTL, research has aimed to find tasks (from the same

language) which are phonetically relevant to the main task [12]. The aim being to

improve generalization to new data. Both [135] and later [76] looked at a very similar

approach, defining additional auxiliary tasks in MTL via broad, abstract phonetic

categories for English. With regards to low-resource languages, [24] and later [25]

created extra tasks using graphemes or a universal phoneset as extra targets.
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6.4 DNN-Hybrid Training as Model Transfer

The standard DNN-Hybrid approach uses an initial GMM-HMM system to generate

the labeled data for supervised DNN training. This reliance of the DNN on GMM

alignments is actually a form of model transfer, where the DNN is trained to perform

the exact same classification as its GMM predecessor. The DNN not only learns the

frame alignments from the individual GMMs, but also the structure of the phonetic

decision tree used to define the labels, as shown in Figure (6-1)∗.

Figure 6-1: GMM→DNN Model Transfer

However, all hierarchical knowledge inherent to the decision tree is lost to the DNN.

The DNN only sees the leaves of the tree, but none of the relationships among those

leaves. The branches and roots are lost, which contain more abstract, language-general

knowledge. The current study extracts the hierarchical knowledge of this tree via

MTL, by modeling various levels of the tree as separate tasks.

∗The original decision tree graphic comes from [168], and the original neural net graphic comes
from [71]
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6.5 Experiments

The following experiments tease out (1) the level of detail at which the source language

should be modeled and (2) the amount of weighting which should be given to the

target language training examples. With regards to the first question, the experiments

here are crafted to answer the question: How much phonetic detail should the source

language be modeled at to best transfer inductive bias to the target language? We can

model the source language with lots of contextual detail (i.e. the triphone), with

abstracted, context-independent detail (i.e. the monophone), or somewhere in between

(what I dub the “half”-phone) (cf. Figure (6-2)†).

Figure 6-2: Logical Tree Parts

The second question is: How should the target and source languages be weighted

during training? If we train two languages in parallel, the language with more data

will dominate in the fight for influence over shared hidden layers during backprop.

To my knowledge, the importance of relative weighting has not been investigated in

ASR acoustic modeling (although thoroughly discussed in Caruana’s 1997 dissertation

[20]).

To investigate weighting further, I examine the following source-to-target weighting

schemes: 1-to-2, 1-to-1, and 2-to-1. These weights are instantiated during training

via a weight to the target output label, where the label is a one-hot vector. For

example, given 1000 hours of source language and 1 hour of target language, to

achieve a 1-to-1 ratio in training, I would multiply the target labels from the target

language by 1000, resulting in target vectors such as [0, 0, 0, 0, 1000, 0, 0, . . .] instead
†Original figure from [168].
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of [0, 0, 0, 0, 1, 0, 0, . . .].

6.5.1 Data

Two speech corpora are used in the following experiments:

1. ≈ 5 hours of English (4.86 hours of Mini LibriSpeech)

2. ≈ 1.5 hours of Kyrgyz (1.59 hours of audiobook)

6.5.2 Model Building

All models were build using the Kaldi toolkit as Time-Delay Neural Networks (TDNNs)

via the nnet3 approach [117, 113]. ‡

In GMM training, monophones (for each language) were allotted 1,000 Gaussian

components, and trained over 25 iterations of EM. These monophones were then

expanded into context-dependent triphones via a phonetic decision tree, with a

maximum of 2,000 leaves & 5,000 Gaussians (Mini LibriSpeech reached 1584 leaves,

and Kyrgyz reached 752). The resulting tied-state clusters (i.e. leaves) are then

trained as context-dependent triphones over 25 iterations of EM. Given the alignments

from the GMM-HMM models, a 5-layer, 500-dimensional TDNN is trained over 10

epochs of backprop on a single GPU instance.

Each auxiliary task is implemented as a separate output layer along with a separate,

penultimate hidden layer. All other hidden layers of the TDNN are trained in parallel.

A declining learning rate was used, with an initial 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.0015 and a final

𝛼𝑓𝑖𝑛𝑎𝑙 = 0.00015.

During testing, only the main task is used. The additional tasks are dropped and

the baseline Kyrgyz triphones are used in decoding. This highlights the purpose of the

extra tasks: to force the learning of robust representations in the hidden layers during

training; they serve as “training wheels” which are then removed once the net is ready.

‡All code made be found at https://github.com/JRMeyer/multi-task-kaldi.
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Baseline Model

All the following architectures will be compared to the performance of a baseline model

of identical architecture (5 hidden layers, 500-dimensional layers, ReLU activations,

same linear objective function). The output targets are standard context-dependent

triphones trained on Kyrgyz audio. To account for any advantage multiple output

layers may bring about, the baseline contains two output layers, where the tasks are

identical. In this way, random initializations in the weights and biases for each task

are accounted for.

Auxiliary Tasks

The auxiliary tasks all train on English language data from the Mini LibriSpeech

corpus. Investigating the intuition that labels generated by a standard triphone

phonetic decision tree are not the best representation of data for transfer learning,

the auxiliary tasks here investigate different levels in the decision tree’s branches. I

split the LibriSpeech phonetic decision tree into three logical parts (cf. Figure (6-2)):

1. roots (standard monophones)

2. branches (custom “half”-phones)

3. leaves (standard triphones)

The “half”-phones were created by halving the optimal number of leaves from the

triphone system (i.e. 1584 leaves) and re-training a new GMM-HMM system with

half the optimal number of leaves (1/2 * 1584 = 792 leaves). All the other parameters

were left unchanged (number of Gaussian components, iterations of EM, etc.). An

overview of the auxiliary tasks can be found in Table (6.1).

By forcing the neural net to recognize higher levels in the English source tree, the

net will learn representations which are more abstract, and therefore more likely to be

relevant to another language.
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Table 6.1: Auxiliary Tasks

Logical Tree Part Level of Phonetic Detail № of Tasks

Roots Monophones 1
Branches Half-phones 1
Leaves Triphones 1
Lower Tree Monophones + Half-phones 2
Upper Tree Half-phones + Triphones 2
Whole Tree Monophones + Half-phones + Triphones 3

Weighting Procedure

The addition of each above task adds approximately 5 hours of training data to the

standard training of a Single Task Model on Kyrgyz. As such, a weighting procedure

was used to balance the relative influence of source vs. target training data on

backprop. For example, to reach a one-to-one ratio, where one hour of Kyrgyz is equal

to one hour of English, I multiplied every Kyrgyz target one-hot vector by 3.06. The

exact weighting scheme is shown in Table (6.2).

Table 6.2: Source:Target Data Weighting Scheme

Source:Target Ratio Target Weighting

2:1 1.53x
1:1 3.06x
1:2 6.12x

6.5.3 Results

All results come from performance on the same held-out 30-minute section of Kyrgyz

audiobook. Decoding is performed with a bigram backoff language model trained on a

Wikipedia Kyrgyz dump, and contains, 103,998 unigrams and 56,6871 bigrams. The

bigram language model, lexicon, and main-task decision tree are built into a standard

decoding graph (i.e. a Weighted Finite State Transducer) in the traditional Kaldi

pipeline.

The experimental results are shown in Table (6.3) as percent Word Error Rate

(WER) relative to the baseline model. All experiments show improvement over the

baseline. Each column has in bold the model which performed best (the bottom row
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has also the bolded best average weighting).

Table 6.3: Reduction in Word Error Rates (WER) Relative to Single Task (STL)
Baseline. Values in bold shown an improvement over the baseline.

Source:Target Weighting
Auxiliary (Source Lang) Tasks 1-to-2 1-to-1 2-to-1

STL Baseline 50.54
Monophones 48.20 47.32 47.41
Halfphones 48.68 46.73 48.68
Triphones 49.37 47.12 46.73
Monophones + Halfphones 48.20 48.49 48.10
Halfphones + Triphones 50.05 48.00 47.90
Monophones + Halfphones + Halfphones 48.88 48.20 48.59

We see that on average, across all tasks and task combinations, a 1-to-1 weighting

performed the best with an average 2.90% improvement over the baseline. Averaged

over all weighting schemes, the best auxiliary task was English monophones (most

abstract task).

The best overall combination of weighting and source task detail was a tie between

(1) triphones + 2-to-1 weighting and (2) half-phones + 1-to-1 weighting. Even though

on average the abstract source task labels (monophones) performed better, the more

detailed source tasks achieved best WER in a single run (3.81% improvement).

Comparing performance among combinations of auxiliary tasks, we see that MTL

training with just one auxiliary task always performed better than two or three extra

source tasks.

6.6 Discussion

Perhaps the most interesting finding is the interaction between level of detail in

individual source tasks and relative weighting during training. We find that in general,

the less detail in the source task, the less weight we should give it during training.

The monophones were the exception to the rule, getting best performance with 1-to-1

weighting. The following discussion will focus on this interaction (i.e. experiments

represented in the first three columns of Table (6.3)).
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(a) 1-to-2 Weighting // Monophones (b) 1-to-2 Weighting // Triphones

(c) 1-to-1 Weighting // Monophones (d) 1-to-1 Weighting // Triphones

(e) 2-to-1 Weighting // Monophones (f) 2-to-1 Weighting // Triphones

Figure 6-3: Source:Target Weighting vs. Source Task Detail
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A task with fewer labels is typically easier to learn, finds a local minimum more

quickly, and is less willing to budge once it is settled. A more difficult source task will

take longer to learn, and as such, the target task will be able to exert more influence

on the shared hidden layers. We see this behavior during training in Figure (6-3).

Figure (6-3) shows neural net performance during training (i.e. frame-level classifi-

cation accuracy) on two separate auxiliary tasks (cf. Figure (6-3) columns) and three

separate weighting schemes (cf. Figure (6-3) rows). The source task is weighted heavier

in the last row, the target task is weighted more in the first row, and the source and

target are weight equally in the center row. The left column shows experiments with

English monophones as source task, and the right column shows English triphones as

a source task. The Green vs Blue lines represent training data accuracy (for English

vs. Kyrgyz respectively). The Red vs. Orange lines represent validation data accuracy

(for. English vs. Kyrgyz respectively).

We see most overfitting to the target language data when the source task is least

weighted and most detailed (cf. Figure (6-3d)). This model performed substantially

worse than all others displayed here, with only a 1.17% WER improvement over

baseline. Looking up to Figure (6-3c) we see the opposite extreme, where the source

task is most weighted and least detailed. The gap between source and target tasks is

widest in this setting, because the source task finds a good local minimum quickly,

and the target data never has enough weight to influence the hidden layers. This is

not the optimal weighting for this task (3.13% vs. 3.22% improvement).

These results indicate that merely adding related tasks in training via MTL is not

enough to guarantee optimal transfer - one must consider task difficulty and weight

accordingly.

Multi-Task Learning promises a very simple solution to a very hard problem, but

it does not always deliver. It would seem that as long as we can add relevant tasks to

our net, through the good graces of backprop, a best solution will automatically be

discovered. It would also seem that we are guaranteed to get better results as long as

we keep adding related tasks. This study shows that the picture is not so simple.

Starting with three additional tasks which are clearly related a priori, this study
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investigated each task’s import and the dynamics of task combinations. Each task

represents a level of abstraction from the typical training labels, from fine-grained

(triphones), to more abstract (half-phones) to completely context-free (monophones).

In addition to these three levels (deduced from a given decision tree), I tested logical

combinations of abstractions: the entire tree, the top half of the tree, and the bottom

half of the tree. None of these combinations outperformed the tasks added individually.

The interaction of task weighting and task detail is perhaps the most interesting

finding presented here. With more labels, the task is inherently more difficult and

the model has more parameters to train. As such, models with fewer labels found

their local minimum more quickly, and were more likely to exert influence over shared

hidden layers than the target task (i.e. from a smaller dataset). In similar MTL

setups, care should be taken to weighting auxiliary tasks relative to their simplicity,

even if tasks are related.
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Chapter 7

Multi-Task Acoustic Modeling via

Discovered Tasks

7.1 Contributions of this chapter

The current chapter investigates Acoustic Model training via Multi-Task Learning,

where the auxiliary tasks are discovered in a lightly supervised setting. Specifically,

I train a Multi-Task DNN Acoustic Model in the Hybrid framework, such that

the Acoustic Model has two separate output layers which represent (1) traditional

phonemes defined by a phonetic decision tree or (2) clusters of audio discovered by

k-means clustering followed by a mapping to existing target labels. Given 1̃.5 hours of

audio, I observe a best-case 1.5% relative improvement in Word Error Rate. However,

given the standard deviation of experimental runs, the improvement is not statistically

significant from a paired t-test. Nevertheless, this line of research promises easily

scalable improvement in Word Error Rate, and can be easily applied in a completely

unsupervised setting, and as such warrants further exploration.

7.2 Introduction

The current study investigates auxiliary tasks which are not hand-crafted by a human,

but automatically discovered from training data in two steps. First, unsupervised
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clustering (i.e. k-means clustering) is performed on the audio training data, then the

existing triphone labels are mapped onto the discovered clusters. The second step

ensures there will be some level of relatedness between the discovered clusters and

the original labels. The cluster identities are then assigned as target labels for an

additional task for Acoustic Model training via backpropagation.

Figure 7-1: Multi-Task Acoustic Model Architecture
investigated in the current study. Figure reproduced
from [71].

7.3 Experiments

All Acoustic Models trained in this study are Time-Delay Neural Networks (TDNN),

and are used in the standard DNN-HMM Hybrid approach for decoding. In general,

the training procedure is standard in that the main task is trained on the alignments

from a previously trained GMM-HMM model, where the alignment target is the

state of a context-dependent triphone. Acoustic model training only differs from the

standard pipeline in that the auxiliary task targets do not come directly from the

phonetic decision tree, but rather from k-means clusters.

The intuition behind using k-means clustering is the following: unsupervised

class discovery will surely lead to different classes compared to standard triphone

GMM-HMM state alignment via the Baum-Welch algorithm. These k-means class
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assignments will be hopefully similar enough to the standard triphone labels that the

clusters encode linguistically relevant categories. If the clusters are in fact linguistically

relevant, then according to past work in MTL we should observe improved performance

on the main task.

Instead of using raw k-means cluster labels for the auxiliary task, we first map

all training examples which share a HMM triphone label to the same cluster. This

ensures a certain degree of similarity between the main and auxiliary task. This

effectively results in a merging of triphone labels, leading to a higher degree of

linguistic abstraction.

7.3.1 Auxiliary Task Discovery

For both the main task and the auxiliary task, feature processing follows the exact

same setup. Audio features are extracted as 13 dimensional PLP features with a 25ms

Hamming window at a 10ms shift. The resulting feature vectors are then spliced to

contain a context of 16 frames to the left and 12 frames to the right, and CMVN

normalization is applied.

Given the extracted audio features, new labels for the auxiliary task were discovered

in two main steps. First, we perform k-means clustering with a pre-set number of

cluster centroids.∗ The number of cluster centroids is a hyperparameter, and in our

system is not learned. All the experiments reported here were run using a number

of cluster centroids that we found appropriate relative to the number of triphones

discovered by a standard GMM-HMM setup on the same data set. This first step is

completely unsupervised, and does yield us with target labels (i.e. cluster IDs) which

can be used for classification as an auxiliary task. However, to ensure some level

of relatedness between this discovered auxiliary task and the main task of triphone

classification, we perform an additional step.

In this second step, we perform a mapping of k-means cluster IDs to triphone

state IDs. Given all training examples aligned to a given triphone state, the most

commonly assigned k-means centroid is chosen as new target label for those examples.
∗TensorFlow k-means scripts: https://github.com/JRMeyer/kaldi-tf
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As such, training examples aligned to the same triphone will share the same k-means

cluster. After mapping, the resulting labels will represent groupings of data which

correspond to either individual triphone states or clusters of triphone states. That is,

the resulting labels will never represent a fraction of the data assigned to a triphone.

If, for example, 100 training examples are aligned to the same triphone state in the

original GMM-HMM alignment, then those 100 training examples will be assigned to

the same cluster after mapping. It is possible that other training examples are also

assigned to that same cluster, but the key is that those 100 training examples will

always share the same new label after mapping.

This label-mapping procedure is illustrated below for one segment of audio. First,

we cluster the audio with k-means (Figure (7-2)), and separately we perform alignment

in the standard GMM-HMM framework (Figure (7-3)). Finally, we find the most

common cluster ID for each triphone state, and re-assign that cluster ID as a new

label, as shown in Figure (7-4).

Figure 7-2: K-Means Discovered Clusters

Figure 7-3: GMM-HMM aligned Triphone States
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Figure 7-4: Voting & Mapping of Triphone-States → Clusters

7.3.2 Model Architecture

All experiments are trained and tested using the Hybrid DNN-HMM framework. Our

experimental Acoustic Models are deep neural networks which have two separate

output layers instead of just one (c.f. Figure (7-1)). The two output layers predict

target classification labels for either (1) the main task (i.e. standard Kaldi triphone

IDs) or (2) the auxiliary task (i.e. target labels which have been discovered via k-means

clustering).

During GMM alignment, monophones were allotted 1,000 Gaussian components,

and trained over 25 iterations of EM. These monophones were then expanded into

context-dependent triphones via a phonetic decision tree, with a maximum of 2,000

leaves & 5,000 Gaussians. The resulting tied-state triphones are then trained over 25

iterations of EM.†.

Final models are trained in Kaldi as nnet3 Time-Delay Neural Networks (TDNNs)

via a cross-entropy objective function [117, 113]. Given the alignments from the

GMM-HMM models in addition to the discovered cluster assignments, an 11-layer,

532-dimensional TDNN with ReLU activation functions is trained over 5 epochs of

backprop on a single GPU instance.

The main task (i.e. triphone state classification) and auxiliary task (i.e. cluster

assignment classification) are implemented as separate output and penultimate layers.

All other hidden layers of the TDNN are trained in parallel. A declining learning rate

†The GMM alignment script (along with all other experimental code) can be found on GitHub at
https://github.com/JRMeyer/multi-task-kaldi
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was used, with an initial learning rate of 0.0015 and a final learning rate of 0.00015.

7.3.3 Data

The Kyrgyz speech corpus used in the following experiments is the same as used in the

previous chapters: an audiobook of a single female speaker of Kyrgyz. A total of 511

utterances of transcribed speech were used in training, and a held out 100 utterances

were reserved for testing. Given that we used k-folds cross validation for (with k==5),

the length of the train and test sets changed for each k, but the number of utterances

was fixed.

7.4 Qualitative Analysis of Newly-Found Labels

These newly-discovered data clusters should be useful as an auxiliary classification

task only in so far as they capture linguistically relevant groups of audio. If these new

labels correspond to sounds such as phonemes, then that information should be useful

to the main task.

Previously, researchers found these auxiliary target labels by either defining lin-

guistic categories by hand or by using monophones from the phonetic decision tree.

Training a model to identify these additional characteristics is thought to help because

the model learns a set of underlying phonetic features which are useful for classifying

the main targets.

These attempts at modeling abstract phonetic information all get at the same

problem. A neural Acoustic Model trained on standard targets (e.g. triphones,

characters) is trained to learn that each target is maximally different from every other

target. In reality, we know that some of these targets are more similar than others,

but the model does not know that.

Taking the example of triphone targets, the Acoustic Model does not have access to

the knowledge that an [a] surrounded by [t]’s is the same vowel as an [a] surrounded

by [d]’s. In fact, these two [a]’s are treated as if they belong to completely different

classes. It is obvious to humans that two realizations of [a] are more similar to each
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other than an [a] is similar to an [f]. However, the output layer of the Acoustic

Model does encode this knowledge. Discriminative training on triphone targets will

loose the information that some triphones are more similar than others. One way

to get that information back is to explicitly teach the model that two [a] triphones

belong to the same abstract class. Given that all realizations of [a] share some

phonetic features (e.g. presence of formant frequencies), a model which is forced to

classify all [a]s together should be biased towards learning phonetic representations

of the underlying commonalities. If the tasks are related, then these representations

should be useful for completing other tasks.

As such, if our k-means clustering and subsequent mapping led to linguistically

useful groups of the data, we should expect to see improvements in acoustic modeling.

The following analysis is a glance into the contents of the clustering and mapping

process for one experiment (i.e. one run from the five k-folds runs). In this study we

ran three versions of k-means clustering, where 𝑘 = 256, 1024, 4096. As we found out,

for this dataset 1024 seemed to work the best, which is why we chose three settings

grouped around 1024.

The results reported in the qualitative analysis, we took the entire training dataset,

and first discovered 1024 clusters via k-means clustering. After the clustering phase,

we took out data and performed standard GMM-HMM forced alignment, using a

phoneme dictionary which was generated by some simple grapheme-to-phoneme rules.

Simultaneously, for the exact same training data fold, we generated triphone

alignments (no feature or model adaptation was performed). The resulting phonetic

decision tree yielded 672 leaves (i.e. triphone states).

At this point, we have 1024 clusters and 672 triphone states. As such, before

we even perform our mapping of triphones onto clusters, we know that we will end

up with at most 672 new labels. After clustering, alignment, and the final mapping

procedure, we ended up with a total of 185 new labels.

These labels are equivalent to clusters of triphone states, and we should expect that

the triphones which were grouped together are phonetically coherent. If they are not

phonetically related, then there’s no reason to expect useful bias will be learned from
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this auxiliary task. Out of the 185 newly-discovered labels, 75 of them corresponded

to data from individual triphone states. That is, compared to the GMM-HMM model,

these classes of labels were effectively copied over to the new task. Out of the 185,

nine (9) of the new labels represented groupings of multiple triphones from a single

monophone. This means that 4.8% of the new classes newly-found via the clustering

and mapping procedure effectively re-discovered the phonetic decision tree without

having access to it.

Moving on in the analysis, we decided to take a very course linguistic distinction

(consonants vs. vowels), and see how many of our new classes corresponded to

groupings of either only vowels or only consonants. We found that 39 new classes

(i.e. 21.08%) were consistent in this way (c.f. Table (7.1) for a list of unique clusters).

Furthermore, within these vowel-only or consonant-only clusters we found some logical

groupings of similar phonemes, such as groups of nasal consonants or groups of back

vowels.

In total, but only investigating the contents of these classes, and considering at

most the linguistic distinction of vowel vs. consonant, we found that 84.21% (i.e.

123/185) of newly discovered classes had some linguistic justification.

Vowels Consonants

a j a u k r g n m
Back Vowels → a o a ih k p s sh ch

e j e ih r ng t k s p
e y o u d ch m ng ← Nasals
u ih y u ih t k t k h
i e y o ih d z t k s
a e oe j ih j ih l z t ch d
a ih o u y n p t k zh b

t g b s sh z zh

Table 7.1: Discovered Clusters of Triphone-States
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7.5 Results

7.5.1 Hyperparameter Choice

Task-Weighting in Loss Function

The hyperparameters which we adjusted over our experiments are the following: (1)

the number of clusters used in k-means clustering, and (2) a weight, 𝛼, which controls

the influence of each task during training via backpropagation. The settings for 𝛼

were chosen based on common choices in the literature, which tend from 𝛼 = 0.1 to

𝛼 = 0.3.

Using the Cross Entropy loss function, we experimented with two different Loss

weighting schemes as shown in Equations (7.1) and (7.2) . In the literature, we found

that commonly Equation (7.1) is used, which down-weights the main and auxiliary

tasks relative to each other, effectively normalizing their influence over training.

In addition to this standard Loss function, we experimented with a second Loss

function, Equation (7.2), on the intuition that given such a small dataset, down-

weighting the main task may non be effective.

ℒ1 = (1− 𝛼) · ℒ𝑀𝐴𝐼𝑁 + (𝛼) · ℒ𝐴𝑈𝑋 (7.1)

ℒ2 = ℒ𝑀𝐴𝐼𝑁 + (𝛼) · ℒ𝐴𝑈𝑋 (7.2)

For each experimental run, a set of 511 utterances was used as the training set, and

a held out set of 100 utterances were used for testing. There were five (5) experimental

runs per hyperparameter setting.
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Number of k-means Clusters

The number of clusters were chosen on a very simple principle: Given that our GMM-

HMM alignments yielded on average between 600 and 700 triphone states, we chose a

number of clusters which was nearly double that (i.e. 1024), and then expanded a

range around this value. We chose this middle value of 1024 k-means clusters, and we

experimented with a low of 256 clusters and a high of 4096 clusters.

7.5.2 Decoding

During decoding, only the main task is used. This highlights the purpose of the

auxiliary task: to force the learning of robust representations during training; the

auxiliary task serves as “training wheels” which are removed once the model is ready.

The auxiliary task exists solely for the purpose of finding good representations for the

main task during training.

Decoding is performed with a unigram language model trained on a Wikipedia

Kyrgyz dump, and contains, 103,998 unigrams. The reason we chose to use a unigram

model instead of a higher-order N-gram model is mostly due to limited access to

computing systems. Nevertheless, from a smaller set of experiments on tri-gram

systems, we observed the same general patterns.

The language model, lexicon, and main-task decision tree are built into a standard

decoding graph (i.e. a Weighted Finite State Transducer) in the traditional Kaldi

pipeline. The experimental results are shown in Table (7.2) and Table (7.3) as average

percent Word Error Rate (± standard deviation) over the five testing folds from our

k-folds cross validation. The WER of the best performing model for each Loss function

is displayed in bold in each table.

First, in Table (7.2) we present the results from the experiments using the standard

relative Loss function in Equation (7.1). Second, in Table (7.3) we present the results

from the experiments using the simplified Loss function in Equation (7.2).

With regards to the results in Table (7.2), we find small improvements in the

average WER of four of the nine of the experiments. However, if we look to the
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𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3

Single Task Baseline 57.55 ±1.82

+ 256 clusters 57.93 ±1.63 57.04 ±1.58 57.66 ±1.24

+ 1024 clusters 57.69 ±3.78 56.99 ±3.08 57.60 ±0.79

+ 4096 clusters 57.25 ±2.87 58.07 ±1.35 57.45 ±0.32

Table 7.2: WER% for Traditional Weighting Scheme. The results in each cell show
average percent Word Error Rate (± standard deviation) over five testing folds from
k-folds cross validation.

standard deviation of WERs, for any experiment which showed improvement, the

standard deviation of that experiment was greater than the relative performance gains.

We performed a paired t-test for each experimental run in comparison to the baseline,

and none of the improvements were statistically significant.

At this point, we decided to modify the Loss function from the tied, relative task

weighting in Equation (7.1) to the absolute down-weighting of the auxiliary task in

Equation (7.2). The results from these former experiments are displayed in Table

(7.3).

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3

Single Task Baseline 57.55 ±1.82

+ 256 clusters 57.33 ±2.49 58.02 ±2.09 57.18 ±0.56

+ 1024 clusters 57.74 ±3.06 56.88 ±1.33 57.13 ±1.55

+ 4096 clusters 57.56 ±2.53 57.49 ±3.17 57.31 ±1.31

Table 7.3: WER% for Simple Weighting Scheme. The results in each cell show average
percent Word Error Rate (± standard deviation) over five testing folds from k-folds
cross validation.

The experimental results in Table (7.3) using the simpler Loss function in Equation

(7.2) show a similar pattern to the original results. We do find a relative improvement

with this new Loss function compared to the former, but nonetheless the standard

deviations are too wide to show significance (i.e. from the paired t-test).
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7.6 Discussion

The current study presents an initial step towards unsupervised task discovery for

Multi-Task acoustic modeling. As more work in Automatic Speech Recognition moves

towards End-to-End modeling (which does not use frame-level alignments) this line

of work promising in that if we find truly unsupervised auxiliary tasks, they can be

seamlessly integrated into End-to-End modeling.

Currently, End-to-End speech recognition systems require massive amounts of

data to be trained, because they jointly learn each component of traditional models

(i.e. pronunciation dictionary, language model, acoustic model). Traditional Acoustic

Models also require less data because they make use of the triphone alignments from

a previously trained GMM-HMM model. End-to-end models don’t even have access

to frame-level alignments. However, continuing this line of research to it’s logical

application to End-to-End systems, if we can find phoneme-like representations in the

data in an unsupervised setting, then we can add frame-level targets or embedding

targets for each audio frame.

For the current experiments, we worked in the traditional Hybrid DNN-HMM

framework. The experiments here showed small average relative improvements, but

the variation in performance was too great to give us statistical significance (as per a

paired t-test).

Ideally we would not have the number of k-means clusters be a hyperparameter,

but find some way to automatically discover the relevant number of classes. A number

of promising approaches to unsupervised phoneme discovery can be found in the

literature.‡ It may be the case that we do not even need to find discrete clusters of

phoneme categories, but rather, phonetic embeddings which encode information useful

in discrimination.

‡Consult further the publications from the ZeroSpeech2015 and ZeroSpeech2017 challenges.
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Chapter 8

End-to-end Cross-lingual Transfer

Learning∗

8.1 Introduction

In previous chapters of the dissertation, I investigate the beneficial effects of Multi-Task

Learning on training Acoustic Models. This chapter takes a related, but different

approach to the low-resource problem. Instead of assuming that the ASR practitioner

has access to both a source and target dataset, in the following work on Transfer

Learning, only a trained source model and target dataset are assumed.

In development scenarios Transfer Learning is often preferred over Multi-Task

Learning because Transfer Learning typically requires fewer compute and fewer data

resources (e.g. datasets and storage). For example, in lieu of using a 3,000+ hour

dataset of English, one can make use of a model trained on that dataset. To train the

original model from scratch, one would need approximately 2 days of wall-clock-time

with 8 TitanX Pascal GPUs (each with 12GB of VRAM). The cost of just performing

one training run will be expensive, but if the researcher factors in the reality of having

to perform parameter-search over multiple training runs, the cost becomes prohibitive.

By using a pre-trained highly performant model we don’t have to incur those costs,

∗This chapter is a modified version of a paper co-authored by Josh Meyer, Francis Tyers, Reuben
Morais, and Kelly Davis.
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because the original model-trainers already did.

Furthermore this chapter is an advancement from previous chapters in that it deals

with End-to-End training. In previous chapters all experiments were set squarely within

the hybrid, DNN-HMM framework. This chapter explores Connectionist Temporal

Classification (CTC) networks which take audio as input and return characters as

output, without any phonetic dictionary.

8.2 Road Map

This chapter investigates an End-to-End Transfer Learning approach for Automatic

Speech Recognition which bypasses the need for linguistic resources or domain expertise.

Certain layers are copied from a trained source model, new layers are initialized for a

target language, the old and new layers are stitched together, and the new layers are

trained via gradient descent. The effects of fine-tuning the original, copied layers are

also investigated here.

Finally, the quality of the embedding spaces learned by each layer of the original

DeepSpeech model are investigated. Specifically, this chapter presents results from

linguistically motivated logistic regression tasks which are trained on top of feature-

spaces at different model depths.

Results are presented for transfer-learning from English to the following twelve

languages: German, French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton,

Tatar, Chuvash, and Kabyle.

The trained, source model used here is the v0.3.0 release of Mozilla’s pre-trained

English DeepSpeech†. This model is a unidirectional variation of Baidu’s first Deep-

Speech paper [65], trained via CTC loss on approximately 3,000 hours of English. The

speech data for the 12 target languages was collected via Mozilla’s Common Voice

initiative.‡

End-to-end approaches for ASR are especially interesting for low-resource languages,

†https://github.com/mozilla/DeepSpeech/releases/tag/v0.3.0
‡http://voice.mozilla.org
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because they do not require a pronunciation dictionary. However, all End-to-End

training techniques (CTC [65, 2], Transducer [124, 9], Attention [22, 6], Convolutional

[30, 119]) require thousands of hours of data to train, because the model must learn a

mapping of audio directly to characters without any explicit intermediate linguistic

representations. As such, End-to-End approaches are interesting for smaller datasets,

but the typical training approach will not work. Transfer learning is an ideal solution

for this problem because it is possible to leverage the knowledge from a source domain

in order to bootstrap a model for the target task. Furthermore, the approach doesn’t

require access to a source domain dataset, but rather, a source domain model — which

is often desirable due to copyright and privacy concerns.

8.3 Background

Speech recognition training techniques have been developed with high-resource lan-

guages in mind. The End-to-End approaches require upwards of 10,000 hours of

transcribed audio [65], or even more with data-augmentation [2]. Nevertheless, low-

resource languages started getting attention in the research community with IARPA’s

BABEL program [49], and various working approaches have been developed since

then.

Previous low-resource work exists for End-to-End ASR [8, 147, 127, 31], as well as

traditional DNN-HMM Hybrid ASR [32, 60, 84, 155, 52]. Typically these techniques

involve leveraging data from as many languages as possible and then fine-tuning the

model to one target language of interest. With regards to required resources, the

End-to-End teacher-student approach in [31] is most similar to our approach in that

it assumes only a trained source model and target language data. The algorithm in

[52] is most similar to our copy-paste transfer approach. While these approaches may

work, they typically assume that the developer has access to multilingual data and

enough GPUs to make use of that data — in practice this is often not the case.
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8.4 Overview of Transfer Learning

This paper investigates the effects of transfer learning for low-resource ASR.§ The

goal of transfer learning is to use source-domain knowledge as an inductive bias

during parameter estimation for a target-domain task [107]. Source-domain knowledge

can be found either directly in a source-domain dataset, or indirectly in a trained,

source-domain model. While using a source dataset allows more fine-grained control

of how bias is transferred (e.g. as in Multi-Task Learning), it is easier in practice to

use a source model (given concerns about licensing, compute time, disk space, etc).

This current work is in many ways an ASR analog to the [167] work on transferabil-

ity of ImageNet models and the work of [106] on transferability of the mid-level layers

for image recognition tasks. The authors in [167] reached two major conclusions with

regards to the transferability of features for image classification. Firstly, given the

co-adaptation of layers in the source model, transferring layers isn’t always as simple

as deep vs. shallow. With regards to ImageNet, it was the case that multiple adjacent

layers were co-adapted such that splitting them apart resulted in a degradation of

performance on the target task. Secondly, higher level features may be too specific

to the source domain to transfer well to the target task. Both of these findings are

investigated with regards to End-to-End ASR by transferring pre-trained layers from

a source domain (i.e. English) to a target task (i.e. target language).

Speech recognition and image classification are fundamentally different tasks. All

spoken languages are produced by the human vocal tract, and as such they have

features in common. However, the smallest unit of spoken language (i.e. the phoneme)

is not language-independent, and not all acoustic features are contrastive in all

languages. For End-to-End ASR models, it is unknown where language-independent

representations are encoded. This study is an initial foray into this research direction.

The embedding space of each layer of an End-to-End ASR model is investigated by

training logistic regressions of linguistically-motivated tasks on top of each layer.

§For an overview of transfer learning in ASR, see [38].
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8.5 Experimental Set-up

8.5.1 Model Architecture

All reported results were obtained with Mozilla’s DeepSpeech toolkit¶ — an open-

source implementation of a variation of Baidu’s first DeepSpeech paper [65]. This

architecture is an End-to-End sequence-to-sequence model trained via stochastic

gradient descent with a CTC loss function. The model is six layers deep: three fully

connected layers followed by a unidirectional LSTM layer followed by two more fully

connected layers (c.f. Figure 8-1). All hidden layers have a dimensionality of 2048 and

a clipped ReLU activation. The output layer has as many dimensions as characters in

the alphabet of the target language (including any desired punctuation as well as the

blank symbol used for CTC). The input layer accepts a vector of 19 spliced frames (9

past frames + 1 present frame + 9 future frames) with 26 MFCC features each (i.e. a

single, 494-dimensional vector).

8.5.2 Transfer Learning Procedure

The Transfer Learning technique in the current study is implemented as follows: a

certain number of trained layers are copied from a pre-trained English DeepSpeech

model, then a certain number of new layers are initialized and appended to the old

layers. Finally, the newly initialized layers are updated via gradient descent according

to the target language data. Optionally, the original layers are fine-tuned to the target

language.

Newly appended layers are initialized via Xavier Initialization [54]. The number of

appended layers and their architecture (i.e. Feed-Forward vs. LSTM) are chosen to be

exact copies of the layers which were not copied from the original model. That is, all

models investigated here are 6 layers deep: three fully connected layers followed by a

unidirectional LSTM layer followed by two more fully connected layers. The Transfer

Procedure is shown in Figure 8-2.

¶https://github.com/mozilla/DeepSpeech
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Figure 8-1: Architecture of Mozilla’s DeepSpeech ASR system. A six-layer unidirec-
tional CTC model, with one LSTM layer.
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Figure 8-2: “Copy-Paste” Transfer Learning. In this example, a subset of model
parameters trained on a language using the Latin alphabet is used to create a new
model for a new language, written with the Cyrillic alphabet. Blue model parameters
have been copied from the source model, and the green model parameters have been
re-initialized from scratch.

8.5.3 Training Hyperparameters

All models were trained with the following hyperparameters on a single GPU. I use

a batch-size of 24 for train and 48 for development, a dropout rate of 20%, and a

learning rate of 0.0001 with the ADAM optimizer. The new, target-language layers

were initialized via Xavier initialization [54]. Early stopping was determined when the

validation loss had either (1) increased over a window of 5 validation iterations, or (2)

the 5th loss in a window had not improved more than a mean loss threshold of 0.5

and the window of 5 validation losses showed a standard deviation of < 0.5.
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8.5.4 Language Model

A language model is used in beam-search decoding, as outlined in [66]. For each

language, a trigram backoff language model is trained from the raw text of Wikipedia

using kenlm [70]. Singleton 2-grams and 3-grams were pruned to keep the compiled

trie and binary ARPA files under 2G each.

8.5.5 Languages

The languages in our sample are typologically and genetically diverse. There are

eight Indo-European languages, including three Romance languages (French, Italian,

and Catalan), three Celtic languages (Welsh, Breton, and Irish), one Slavic language

(Slovenian), and one Germanic language (German). In addition to this there are three

Turkic languages (Turkish, Chuvash, and Tatar) and one Berber language (Kabyle).

All of the languages with the exception of Tatar and Chuvash are written with the

Latin alphabet. Both Tatar and Chuvash are written with the Cyrillic alphabet. Each

language’s writing system has a different number of characters, and all have characters

which are not found in the English alphabet. All languages are written left to right.

In terms of morphological typology, they range from fusional (in the case of the

Indo-European languages and Kabyle) to agglutinative (in the case of the Turkic

languages). The languages also display a range of interesting morphophonological

phenomena, such as initial consonant mutations in the Celtic languages — where the

first consonant of a word changes depending on morphosyntactic context — and vowel

harmony in the Turkic languages — where vowels in an affix agree with the last vowel

in the stem. These phenomena are both kinds of long-range dependencies.

8.5.6 Data

All the data used in this study come from Mozilla’s Common Voice initiative.‖ The

Common Voice data is crowd-sourced via a web app, where users read a visually

presented sentence off their screen. The recording is then verified via a voting system

‖http://voice.mozilla.org
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in which other users mark a {transcript, utterance} pair as being correct or incorrect.

The text is particularly messy, containing digits (i.e. [0-9]) as well as punctuation. The

absolute values of the results presented here are therefore lower than state-of-the-art for

some languages, because this chapter concerns the relative effects of transfer learning,

not SOTA itself. The text processing was identical across all languages to ensure as

much comparability as possible. The audio itself is particularly noisy, often donated

from smartphones in everyday noise environments. The language donation efforts are

often spear-headed by a small group of individuals. As such, the early datasets are

biased towards a small number of speakers, as can be seen in Table 8.1.

We made dataset splits (as can be seen in Table 8.1) such that one speaker’s

recordings are only present in one data split. This allows us to make a fair evaluation

of speaker generalization, but as a result some training sets have very few speakers,

making this an even more challenging scenario. The splits per language were made as

close as possible to 80% train, 10% dev, and 10% test.

Dataset Size

Language Code

Audio Clips Unique Speakers

Dev Test Train Dev Test Train

Slovenian sl 110 213 728 1 12 3

Irish ga 181 138 1001 4 12 6

Chuvash cv 96 77 1023 4 12 5

Breton br 163 170 1079 3 15 7

Turkish tr 407 374 3771 32 89 32

Italian it 627 734 5019 29 136 37

Welsh cy 1235 1201 9547 51 153 75

Tatar tt 1811 1164 11187 9 64 3

Catalan ca 5460 5037 38995 286 777 313

French fr 5083 4835 40907 237 837 249

Kabyle kab 5452 4643 43223 31 169 63

German de 7982 7897 65745 247 1029 318

Table 8.1: Number of audio clips and unique speakers per language per dataset split.

Results from this dataset are particularly interesting in that (1) the text and audio
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are challenging, (2) the range of languages is wider than most any openly available

speech corpus, and (3) the amount of data per language is from very small (less than

training 1,000 clips for Slovenian) to relatively large (over 65,000 clips for German),

as can be seen clearly in Figure 8-3.
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Figure 8-3: Number of audio clips per train split for each language. Audio clips for
any individual speaker are only found in one split of the data (i.e. dev / test / train).

8.6 Results
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Figure 8-4: Mean and standard deviation for CER improvement for different # layers
transferred from English.
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The following results will be presented as follows: First, I discuss results from

experiments in which the copied parameters are not updated. These experiments are

refered to in prose, tables, and figures as frozen parameter transfer. Second, I discuss

results from experiments in which the copied parameters are updated. I refer to these

experiments as fine-tuned parameter transfer.

A priori, frozen transfer is interesting in that parameter estimation (per epoch)

is faster than fine-tuning. Fewer calculations are required at every iteration of

backpropagation with frozen transfer, because the gradient does not need to be

calculated for the copied layers. From a model-interpretability point of view, frozen

transfer offers us information as to what the different layers of the source model

may be encoding. Results from frozen transfer will allow us to compare findings in

this chapter to [167], investigating co-adaptation between layers as well as feature

specificity to the source domain towards the output layer.

End-to-end speech recognition is by definition a mapping of audio directly onto

characters. While in practice researchers often report results which incorporate some

kind of language model during decoding, during parameter search all End-to-End

models are trained to map audio directly onto characters. As such, the End-to-End

model should learn to perform complicated hierarchical tasks which are handled by

independently trained sub-modules in traditional speech recognition.

In traditional, “hybrid” speech recognition, various submodules are used to (1)

identify context-dependent units (triphones) within continuous speech, (2) map those

units onto higher-order sub-word parts (phonemes), and (3) map those sub-word parts

onto written words in the target language. One might expect that End-to-End models

are also capable of encoding these various higher-ordered representations, but I have

very little idea as to where these representations are stored. Furthermore, some of

these learned functions are more useful for multilingual transfer than others. If I

can make an educated guess as to which layers of End-to-End models encode useful

information, then transfer learning experiments may become much more efficient.

Frozen transfer learning can give us a glimpse as to where these functions may have

been learned in the source model.
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Fine-tuned transfer learning is interesting in that it has been shown to perform

out-perform frozen transfer on tasks like image recognition [167]. As such, while

fine-tuning will usually perform better in terms of accuracy, frozen transfer takes

fewer compute resources to train, and may lend us insight as to where the models has

learned more or less transferable features.

8.6.1 Frozen Parameter Transfer

The following experiments were performed by “slicing” the original model at different

depths. The first experiment serves as our absolute baseline, where the entire six-layer

CTC model is trained from scratch without any transfer from English (c.f. column

headed by ‘None’). All transferred layers are contiguous, starting from the input layer.

For example, the column with header ‘2’ displays results where the first two layers

(i.e. input layer + first hidden layer) are copied from English, and then four new

layers are added on top. In all cases, the layers from English remain frozen during

backprop, and new layers are updated with the gradient from the target language

data. Early stopping was determined by a held-out validation set. The results from

Frozen Transfer Learning can be found in Table 8.2.

With regards to improvement over the baseline model, for all of the twelve languages

investigated here at least one transfer learning experiment outperformed the model

trained from scratch. After this general finding, interpreting these results from a first

glance is difficult, but if we dig in a little, some trends do emerge. The results in

Table 8.2 only show the best result in bold, but if the improvements are averaged over

the baseline for all languages, we find a clearer visualization of these results in Figure

8-4a. The bars show percent CER improvement averaged over all languages, and the

tick marks display the standard deviation of this improvement.

Two of the five transfer scenarios (i.e. transfer of layer [1] or layers [1-3]) show

reliable improvement over a baseline trained from scratch. Two other transfer scenarios

tend to lead to interference (i.e. layers [1-2] and layers [1-5]). Transfer of the first

four layers (crucially including the LSTM layer) can lead to either improvement or

interference.
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Character Error Rate

Lang.

Number of Layers Copied from English

None 1 2 3 4 5

sl 23.35 23.93 25.30 18.87 17.53 26.24

ga 31.83 29.08 36.14 27.22 29.07 32.27

cv 48.10 46.13 47.83 38.00 35.23 42.88

br 21.47 19.17 20.76 18.33 17.72 21.03

tr 34.66 32.98 35.47 33.00 33.66 36.71

it 40.91 39.20 41.55 38.16 39.40 43.21

cy 34.15 32.46 33.93 31.57 35.26 36.56

tt 32.61 29.20 30.52 27.37 28.28 31.28

ca 38.01 36.44 38.70 36.51 42.26 47.96

fr 43.33 43.30 43.47 43.37 43.75 43.79

kab 25.76 25.57 25.97 25.45 27.77 29.28

de 43.76 44.48 44.08 43.70 43.77 43.69

Table 8.2: Frozen Transfer Learning Character-error rates (CER) for each language,
in addition to a baseline trained from scratch on the target language data. Bolded
values display best model per language. Shading indicates relative performance per
language, with darker indicating better models.
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Similar to the findings of [167], transfer of the first and second layer fails most

likely due to co-adaptation between the second and third layers. This conclusion

is based on the fact that transfer of the proceeding layer (i.e. layer [1]), as well as

transfer up to the following layer (i.e. layers [1-3]) both show improvement. If transfer

at layer [2] failed due to over-specificity, then logically we should not observe transfer

at layer [3] showing reliable improvement. Furthermore, on average transfer up to

layer [5] of DeepSpeech shows interference. Interference of transfer at this layer is due

to over-specificity to the source domain (i.e. English).

For languages with the largest training sets (Kabyle, French, Catalan, and German),

the relative improvement from frozen transfer was smaller compared to languages with

less data. The best-case improvement in CER for each language is presented (along

with the results from fine-tuning experiments) in Figure 8-5.

8.6.2 Fine-Tuned Parameter Transfer

In the following experiments, the copied layers from English are updated via gradient

descent (i.e. fine-tuned) according to the training data from the target language.

Aside from this difference, the fine-tuned and frozen experiments followed the exact

same training procedure. Results from all fine-tuned experiments are presented in

Table 8.3.

The first result that stands out (in contrast to Table 8.2) is that for almost all

of the twelve languages, the best transfer scenario is when the first four layers from

a trained English model are copied. Upon closer inspection, we find that for the

three languages which are the exception to this rule (Irish, French, and German), the

difference in improvement between the best result and the fourth layer is small (i.e.

less than half of a percent in CER).

Furthermore, looking at the averaged results (including standard deviation), we

find that it is very much the case that the fourth layer leads to largest improvements

on average (c.f. Figure 8-4b). As with the frozen parameter transfer experiments, even

with fine-tuning the largest languages show smaller relative improvements compared

to languages with less data (c.f. Figure 8-5). Frozen parameter transfer is typically
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Character Error Rate

Lang.

Number of Layers Copied from English

None 1 2 3 4 5

sl 23.35 21.65 26.44 19.09 15.35 17.96

ga 31.83 31.01 32.2 27.5 25.42 24.98

cv 48.1 47.1 44.58 42.75 27.21 31.94

br 21.47 19.16 20.01 18.06 15.99 18.42

tr 34.66 34.12 34.83 31.79 27.55 29.74

it 40.91 42.65 42.82 36.89 33.63 35.10

cy 34.15 31.91 33.63 30.13 28.75 30.38

tt 32.61 31.43 30.80 27.79 26.42 28.63

ca 38.01 35.21 39.02 35.26 33.83 36.41

fr 43.33 43.26 43.51 43.24 43.20 43.19

kab 25.76 25.5 26.83 25.25 24.92 25.28

de 43.76 43.69 43.62 43.60 43.76 43.69

Table 8.3: Fine-Tuned Transfer Learning Character-error rates (CER) for each lan-
guage, in addition to a baseline trained from scratch on the target language data.
Bolded values display best model per language. Shading indicates relative performance
per language, with darker indicating better models.
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considered appropriate when the target dataset is very small, and as such fine-tuning is

prone to overfit a model with a large number of parameters [167], but our experiments

show that fine-tuning always leads to an improvement over frozen transfer when used

in conjunction with early stopping.

Summarizing findings from the importance of model depth for transfer (c.f. Figure 8-

4), we find that (1) transfer of any segment of the first three (fully connected) layers

leads to near identical performance between frozen vs. fine-tuned, (2) transfer of the

fourth (LSTM) layer leads to large stable gains when fine-tuned, but unreliable gains

when frozen, and (3) transfer of the fifth (fully connected) layer leads to reliable gains

with fine-tuning, and interference when frozen.

8.6.3 Importance of Data Size for Transfer

There is an observable correlation between the size of the training dataset and the

effectiveness of transfer learning (c.f. Figure 8-5). Generally speaking, the more

target data available, the less transfer learning helps. However, with fine-tuned

transfer learning in particular, the performance from the largest datasets tends to the

performance of the baseline. This is a very desirable feature, meaning that on average,

transfer learning with fine-tuning will either improve or match the performance of a

baseline, but performance should not drop significantly.

8.7 Model Interpretability: Investigating Embeddings

The Transfer Learning results presented in this chapter seem to indicate that the first

three layers of the source model encode good features for language transfer. That

is, these features transfer well from English to any of the 12 languages investigated.

However, the above experiments do not get at the substance of what those three layers

are encoding. Furthermore, the fourth (LSTM) layer transfers well with fine-tuning,

suggesting that the layer has learned a combination of English-specific and language-

generic representations. However, at this point there isn’t enough evidence to verify

these intuitions. Even for the fifth layer, we can only assume that frozen transfer fails
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Figure 8-5: Largest improvement from Transfer Learning relative to the baseline, for
each language. Languages are ordered from left → right in ascending order of size of
training dataset. These improvements represent the bolded values in Table 8.2 and
Table 8.3.

due to specificity to English. The follow-up experiments presented in this section aim

to provide evidence for or against these intuitions.

For eleven out of twelve languages, frozen transfer of the first three layers shows

improved Character Error Rate over a baseline (French being the exception with a

0.04 decrease in CER). This finding holds for even the larger languages (i.e. Catalan,

Kabyle, German). These first three layers are purely feed-forward, and as such they

should not be able to encode sequential higher-order information from English (e.g.

spelling rules). This may be a clue as to why the first three layers transfer so well,

regardless of the target language. Furthermore, when transferring these three layers,

CER improvement is essentially identical between frozen or fine-tuned transfer (i.e.

less than 0.017 CER difference between average improvement of fine-tuned vs. frozen

transfer). This means that information from the target language data is adding

nothing extra to the estimation of these layers.

We do find that the LSTM layer can be useful in frozen transfer, but not always.

For seven of the eight smallest languages, frozen transfer of the LSTM layer showed

improvement over the baseline (i.e. Slovenian, Irish Gaelic, Chuvash, Breton, Turkish,
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Italian, Tatar, but not Welsh). For the four largest languages, frozen transfer up to

the LSTM layer either interferes or adds no real improvement over the baseline. This

seems to indicate that the LSTM layer encodes some information useful for transfer

(i.e. language-agnostic sequential information). Given that the fourth layer is the

only recursive layer in Mozilla’s variant of DeepSpeech, this layer must encode all

sequential information, both language-agnostic and language-specific. An example

of language-specific sequential information is spelling rules — they must be learned

for every language. An important kind of language-generic sequential information is

co-articulation — adjacent phonemes effect each other’s acoustic signal based on the

physiology of the human vocal tract. All kinds of sequential information are learned

in this one layer.

Given these experimental observations and linguistic hypotheses on language-

agnostic and language-specific features, I chose to evaluate the usefulness of embeddings

at different layers on two new tasks: classification of audio as speech vs. non-speech,

and classification of audio as English vs. German. If the features encoded at a certain

layer are useful in performing these tasks, then the model has learned something about

human speech which is generic (speech vs. noise) or language-specific (English vs.

German).

As in all the experiments above, the v0.3.0 release of Mozilla’s English DeepSpeech

is used as a source model, but instead of appending more 2048x2048 hidden layers, a

logistic regression is added to the final layer, and trained over three epochs with Cross-

Entropy loss (all other hyperparameters are identical to above transfer experiments).

This is shown in Figure 8-6 and with the loss function as defined in Equation 8.1. This

approach is equivalent to using DeepSpeech as a feature extractor, and estimating

parameters of a logistic regression over those features.

ℒ = 𝑌 · − log(𝑃 ) + (1− 𝑌 ) · − log(1− 𝑃 ) (8.1)

𝑃 = 𝜎((𝐻𝑛 ·𝑊𝑝) +𝐵𝑝) (8.2)
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where

(𝑃 ) = model prediction

(𝑌 ) = ground-truth target label

(𝐻𝑛) = activations of model at layer 𝑛

(𝑊𝑝) = weights of regression layer

(𝐵𝑝) = biases of regression layer

Figure 8-6: An example of Frozen Transfer from trained English CTC model to logistic
regression tasks. In this example, three fully connected layers are transferred from
the original model. Parameters shown in blue are copied and held frozen, parameters
shown in green are estimated via Cross-Entropy Loss.
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8.7.1 Speech vs. Noise Classification

For the first task, a regression is trained to distinguish urban background noise from

audio samples of 13 Common Voice languages (i.e. the 12 mentioned languages plus

English itself). Using multilingual data should reveal the degree to which these features

are specific to English, or language-agnostic. Language-agnostic embeddings should

perform this task better than tasks which are purely specific to English. In order to

train the regression, a dataset of speech data is created by combining Common Voice

samples for thirteen languages into a single “speech” dataset, and for non-speech data,

a standard corpus of environmental city noises (UrbanSound8K [130]) is used.

For the speech data, the data is split into train and test sets of 5005, 442 audio

clips respectively (i.e. 385, 34 clips per language). For the non-speech data, the train

and test splits are made to be 5000, 435. The source DeepSpeech model is sliced at

varying depths, keeping the source layers frozen, and then a single, fully-connected

layer with a single output and logistic activations appended. Results are displayed in

Table 8.4.

Classification Accuracy

Number of Layers Copied from English

1 2 3 4 5 6

51.01 93.68 92.82 95.30 94.55 93.53

Table 8.4: Speech vs. Non-Speech Audio Classification Accuracy (%) of a logistic
regression trained on top of trained, frozen layers of an English CTC model. The
bolded value shows the model with the highest accuracy. Shading corresponds to
relative performance on classification, with darker being more accurate.

For the classification task of speech vs. non-speech, the first layer does not encode

enough information to perform the task. A regression trained over embeddings from

this first layer achieves an accuracy of 51.01% (i.e. essentially a coin-toss) on a held

out test set. However, starting at layer [2], all depths contain enough information to

classify the samples with > 92% accuracy. The best accuracy is seen when slicing the

model at the LSTM (fourth) layer, likely due to being more effective at capturing

long-term patterns, as each sample in the dataset is either all speech or all non-speech.
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Furthermore, in the first task there is a slight drop in accuracy moving from the

fourth layer to the fifth, and likewise a drop from the fifth to the sixth. This seems to

indicate language-specificity (i.e. highly-tuned to English) at the output layers.

Both language-agnostic and language-specific encodings will be useful for speech vs.

noise classification. However, we are also interested as to which layers encode purely

language-agnostic information. To investigate this, we can make use of a language

identification task.

8.7.2 Language Identification

The following section presents results from a language identification task trained on

the embeddings of the various layers of a trained English model. Specifically, a logisitic

regression is trained to classify audio as containing English or German language. The

training dataset is created by taking an equal number of English and German samples

from Common Voice, and then training a regression build on embeddings from varying

model depths, following the same procedure detailed above.

By setting one of the two languages to English, and by extracting embedded

features from a trained End-to-End English CTC as a source model, we can identify

which embedding spaces are English-specific. If the layers do not encode English-

specific information, then a logistic regression built on top of those features will

perform this task poorly. If the layer activates differently for English than for another

language, then we may conclude that the layer in question has encoded English-specific

information.

For the other language, I chose German, given that it is the most closely related to

English of the Common Voice languages. As such, distinguishing English and German

should be a relatively harder task than distinguishing English from any of the other

languages. Train and test datasets were made of {5000, 500} audio clips for each

language (German and English). The classifier was added on top of the DeepSpeech

layers and trained over three epochs with gradient descent from a Cross-Entropy loss

function. The results are presented in Table 8.5.

We find that the features of the top three layers are better than the bottom three
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Classification Accuracy

Number of Layers Copied from English

1 2 3 4 5 6

66.51 66.38 52.77 86.21 74.97 85.00

Table 8.5: English vs. German Audio Classification Accuracy (%) of a logistic
regression trained on top of trained, frozen layers of an English CTC model. The
bolded value shows the model with the highest accuracy. Shading corresponds to
relative performance on classification, with darker being more accurate.

layers on this task. When slicing at the LSTM layer, there’s a significant improvement

in performance with an 86.21% classification accuracy. This finding means that the

model is indeed more language-specific (i.e. English-specific) at the top layers. A

particular interesting finding from Table 8.5 is that feature embeddings from layers

[1-3] are essentially language-agnostic. These features are useless for distinguishing

English and German. However, referencing the results from classification of speech

and background noise (c.f. Table 8.4), we know that embeddings at layer [3] do encode

information about human speech.

As such, the features learned at layer [3] are specific to language, but not to any

one language (in this case, English). This confirms the stated intuition, given that we

observed consistent improvements when transfering these features in an ASR task (c.f.

layer [3] in Figure 8-4a and Figure 8-4b).

8.8 Discussion

In this chapter I present results from End-to-End ASR transfer learning experiments

using a trained English CTC model as a source model and 12 other languages as

target languages. I observe a stable, cross-lingual tendency that the first three layers

of the trained model are crucial for successful transfer. In follow-up interpretability

experiments, we find the first three layers robustly encode the difference between

human speech and background noise, but they do not encode information useful

for distinguishing languages. In this sense, these first three layers encode language-
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general information. Furthermore, transfer learning with fine-tuning can exploit

and adapt useful bias from a fourth, LSTM layer, which is otherwise too specific to

English. Embeddings from this LSTM layer are both useful for speech vs. non-speech

classification as well as language discrimination.

For low-resource languages, transfer learning promises quick bootstrapping, avoid-

ing the need of linguistic resources. Furthermore, supporting experiments which

investigate the interpretability of End-to-End ASR models are crucial for advancing

knowledge on how transfer learning works, and how it can be better used in speech

recognition.

8.8.1 Relation to ULMFiT

Recent developments in NLP directly relate to the findings in this chapter. Specifically,

the work on ULMFiT [73] can be seen as a similar investigation of Transfer in NLP,

from a source task (i.e. General English language modeling) to a target task (i.e. text

classification in a certain domain). The work in ULMFiT introduces an approach

based on three key methods: (1) discriminative fine-tuning, (2) triangular learning

rates, and (3) gradual unfreezing of source layers.

The gradual unfreezing of source layers is a very intuitive approach, and closely

related to the work in this chapter. That is, the work in this chapter shows that

varying language-agnostic and language-specific representations have been learnt in

the End-to-End ASR model, and given this knowledge, a gradual unfreezing approach

as proposed in ULMFiT would be a very exciting avenue for future work. The authors

in [73] do not perform any experiments on model interpretability, but they base their

unfreezing schedule on the basic knowledge that the original model encodes domain

general information towards the input layer, and domain-/task-specific information

towards the output layer. Combining information learned here about DeepSpeech’s

level of linguistic representations, a more informed unfreezing schedule may be posed.

Nevertheless, it is difficult to say how the results from ULMFiT can be translated

into the cross-lingual ASR transfer domain. The former work only deals with English,

and as such, the transfer is between tasks and domains, not languages. It may very
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well be the case that the approach suggested from ULMFiT will need significant

modifications to work in the cross-lingual ASR transfer.

8.8.2 Relevance to the Linguist

Focusing on the follow-up interpretability experiments, the results have some direct

interest to the linguistic community. The first three layers robustly encode the

difference between human speech and background noise, but they do not encode

information useful for distinguishing languages. In this sense, these first three layers

encode language-general information. Linguistically, there’s a lot to un-pack here.

Focusing on just the embeddings of the model’s third layer, we have three main

findings:

1. Layer 3 embeddings transfer well to new languages (with and without fine-tuning)

2. Layer 3 embeddings encode differences between human speech and background

noise

3. Layer 3 embeddings are not useful for language discrimination (English vs.

German)

Furthermore, there is a very relevant piece of information about Layer 3’s architec-

ture:

1. Layer 3 is unable to encode any sequenctial information in the speech signal (it

is a feed-forward layer, as well as all preceding layers)

As such, we know that Layer 3 is performing frame-level (not sequential) operations

which are language-independent (good for ASR transfer, bad for language discrimi-

nation), and human speech-specific (good for speech vs. noise discrimination). The

linguist will have many questions about these embeddings. Are these embeddings a

sort of universal phoneme-extractor? Are these embeddings purely a speech vs. noise

separator, or is there some kind of transformation being applied to the speech signal

(e.g. something akin to allophone-to-phoneme conversion)? Given the results from
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these follow-up studies, we konw that there is some processing on the audio signal

which is special to speech, but we don’t yet know how low-level or high-level that

processing is. It will be of interest to the psycholinguist to know how much this signal

processing corresponds to the processing done by the human ear and brain. There’s

no a-priori reason to assume the human and neural model perform the same kind

of processing, but in either case, the more we know about how the Acoustic Model

performs signal processing, the better we can perform model transfer to new datasets

from low-resourced languages.
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Chapter 9

Conclusions

9.1 The Problem

The goal of this dissertation is to address the following question: How can we best

exploit small datasets to train Acoustic Models for Automatic Speech Recognition via

Multi-Task Learning and Transfer Learning? Among other reasons, I chose to work

with the Multi-Task Learning and Transfer Learning because they do not require the

collection of more in-domain data. As such, the methods investigated here may be

applied to any dataset for speech recognition.

9.2 The Approaches Taken in this Dissertation

Firstly, in Chapter (5) I investigate Multi-Task methods which build off linguistic

knowledge. The methods developed here may be used to train an Acoustic Model for

any language. Secondly, in Chapter (6) I investigate Multi-Task methods which exploit

a natural by-product of the traditional ASR pipeline — the phonetic decision tree.

Thirdly, in Chapter (7) I use an unsupervised learning technique well-known in general

machine learning — k-means clustering. I demonstrate that it is possible to generate

new label-spaces which exert useful inductive bias during Multi-Task Acoustic Model

training. Finally, in Chapter (8) using the well-known “copy-paste” Transfer Learning

approach, I demonstrate that with an appropriate early-stopping criteria, cross-lingual
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transfer is possible to both large and small target datasets, even when the source and

target language are sampled from completely different language families.

9.3 Implications and Future Directions

9.3.1 Multi-Task Experiments

In Chapter (5) we found that by collapsing the phoneme-set of a language along

basic linguistic dimensions, we were able to create new labels which allow us to boost

performance in acoustic modeling in a Multi-Task framework. We replicated this effect

for both cross-lingual transfer and speaker transfer. Furthermore, we found that the

weighting scheme of source-to-target tasks is crucial in achieving best performance.

With regards to future directions, we would like to extend this approach to more

languages and language families (not just English and Kyrgyz as presented here).

Furthermore, another important direction is replicating these results on larger corpora.

As shown in [1], certain Multi-Task results only hold for smaller datasets. The major

bottleneck in the Chapter (5) methodology is that linguistic knowledge is required to

create the new labels, which leads us to the approach in Chapter (6).

In Chapter (6), we found that it is indeed possible to create useful auxiliary tasks

for cross-lingual Multi-Task acoustic modeling by merely slicing the phonetic decision

tree an various depths. Given an English dataset as a source task and a Kyrgyz

dataset as a target task, the English auxiliary labels were varied by keeping them as

monophones, as triphones, or something in between. We find an interesting interaction

between the depth of the phonetic decision tree and the weighting of labels during

backprop on Word Error Rate in the main task. In general, the less phonetic detail

in the source task, the less weight we should give it during training to achieve best

results. As evidenced by the loss curves during training, a task with fewer labels (i.e.

less phonetic detail) finds a local minimum more quickly than a task with more labels.

A more difficult source task (i.e. more labels) takes longer to learn, and as such, the

target task is not able to influence the estimation of the shared hidden layers. These
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results indicate that the addition of related tasks in Multi-Task acoustic modeling

is not sufficient to guarantee successful transfer — the scientist must consider the

relative difficulty of tasks and then weight the gradients accordingly.

In Chapter (7) we train a Multi-Task Acoustic Model, such that the model has two

separate output layers which encode (1) traditional phonemes defined by a phonetic

decision tree or (2) clusters of audio discovered by k-means clustering followed by

a mapping to existing target labels. Given 1.5 hours of audio, we observed a 1.5%

relative improvement in Word Error Rate, however, given the standard deviation of

experimental runs the improvement is not statistically significant from a paired t-test.

Nevertheless, this line of research promises easily scalable improvement in WER, and

can be easily applied in a completely unsupervised setting. Future directions for this

work include exploring unsupervised clustering methods which are appropriate for

audio data. k-means clustering performs worse in highly-dimensional spaces, where

the dimensions are themselves noisy. Some feature extraction and compression (e.g.

LDA) should be performed before clustering methods are applied.

9.3.2 Transfer Experiments

In Chapter (8), we find that Cross-lingual Transfer Learning from a pre-trained English

CTC model to any of the 12 twelve languages tested leads to improvement over a

baseline trained only on the target language. Summarizing the main findings from

this Chapter, (c.f. Figure 8-4), we find that:

1. Transfer of any segment of the first three (fully connected) layers leads to near

identical performance between frozen vs. fine-tuned.

2. Transfer of the fourth (LSTM) layer leads to large stable gains when fine-tuned,

but unreliable gains when frozen.

3. Transfer of the fifth (fully connected) layer leads to reliable gains with fine-tuning,

and interference when frozen.
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These results, taken together with the interpretability findings, lead us to the

conclusion that the first half of DeepSpeech (i.e. from input layer to layer 3) encodes

stable, language-independent but human-language-specific features. Also, all recurrent

information is stored in an LSTM layer, which can be effectively adapted via fine-

tuning.

Furthermore, we found a correlation between the size of the training dataset and

the effectiveness of transfer learning (c.f. Figure 8-5). Generally speaking, the more

target data available — the less transfer learning helps. However, with fine-tuned

transfer learning in particular, the performance from the largest datasets tends to the

performance of the baseline. This is a very desirable feature: transfer learning with

fine-tuning will on average improve or match the performance of a baseline.

9.3.3 Model Interpretability Experiments

With regards to the model interpretability experiments in Chapter (8), the results

have direct interest to the linguistic community. We find that the first three layers

of an English End-to-End speech recognition model robustly encode the difference

between human speech and background noise. However, these same encodings do

not capture information useful for distinguishing languages. In this sense, these first

three layers encode language-general information while remaining language-agnostic.

Focusing on just these embeddings at the model’s third layer, we have three main

findings:

1. Layer 3 embeddings transfer well to new languages (with and without fine-tuning)

2. Layer 3 embeddings encode differences between human speech and background

noise

3. Layer 3 embeddings are not useful for language discrimination (English vs.

German)

Furthermore, there is a very relevant piece of information about Layer 3’s architec-

ture:
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1. Layer 3 is unable to encode any sequential information from the speech signal.

This is due to the fact that Layer 3 is a feed-forward layer, and so are all

preceding layers.

As such, we know that Layer 3 is performing frame-level (not sequential) oper-

ations which are language-independent (good for ASR transfer, bad for language

discrimination). The linguist will have many questions about these embeddings. Are

these embeddings a sort of universal phoneme-extractor? Are these embeddings a

speech vs. noise separator? Is there any higher-level transformation being applied

to the speech signal (e.g. allophone-to-phoneme conversion)? Given the results from

these follow-up studies, we know that there is some processing on the audio signal

which is special to speech, but we don’t yet know how low-level or high-level that

processing is. While not within the scope of this dissertation, these specific questions

may be addressed via comparative visualizations of the activations at Layer 3. For

example, a promising future direction is be the comparison of model activations for

pure background noise vs. pure human speech. If these layers are performing a

signal separation of speech from background noise, we expect the model activations at

these layers to be significantly lower for the background noise audio segments. Such

an experiment is very straightforward given the resources presented in Chapter (8),

namely: a trained release of Mozilla’s DeepSpeech, the UrbanSound dataset, and the

Common Voice dataset.

It will be of interest to the psycholinguist to know how much this signal processing

corresponds to the processing done by the human ear and brain. There is no a

priori reason to assume humans and neural models perform the same kind of audio

processing. Nevertheless, the better we understand how the Acoustic Model performs

signal processing, the better we can perform model transfer to new datasets.

9.4 Summary

This dissertation presents methods for exploitation of a source domain in order to

perform speech recognition in a target domain. The target domain is low-resourced in
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that we only assume access to a limited dataset. The source domain is instantiated

as either a dataset or a pre-trained model. Useful information exists in these source

domains which can be used as inductive bias for learning in a target domain. Multi-Task

Learning and Transfer Learning are leveraged to perform this domain exploitation.

With regards to Multi-Task Learning, I show that new source domains may

be created (and subsequently exploited) using linguistic knowledge, a by-product

in the traditional ASR pipeline, or an unsupervised clustering algorithm. These

approaches are especially relevant to low-resource speech recognition in that the ASR

practitioner can apply any of these methods to any speech dataset in any language.

The progression of methods based on linguistic knowledge (Chapter (5)) to the ASR

pipeline (Chapter (6)) to unsupervised clustering (Chapter (7)) corresponds to a

diminishing of dependencies. The two dependencies in questions are (1) linguistic

knowledge and (2) the traditional ASR pipeline. As the field of ASR moves from

traditional (i.e. Hybrid) models to End-to-End models, methods which do not assume

these dependencies will become more and more relevant. Of these three chapters on

Multi-Task Learning, the final approach in Chapter (7) lends itself best to End-to-End

speech recognition. Regardless of the framework in which we train an Acoustic Model,

methods are more useful, impactful, and replicable if they assume fewer dependencies.

Lastly, with regards to the “copy-paste” Transfer Learning approach explored in

Chapter (8), we have shown that robust cross-lingual transfer in End-to-End ASR

is possible. This is (to date) the most cross-lingual transfer study in End-to-End

speech recognition using openly licensed data (i.e. the Common Voice dataset), and

as such these findings are of great relevance to the speech recognition community.

Furthermore, this chapter includes particularly thought-provoking findings on the

embedding spaces of a well-trained End-to-End speech recognition model. These

findings suggest future research directions on the interpretability of neural models

which operate over human speech signals.

Using any of the methods explored in this dissertation, an ASR practitioner should

be able to improve speech recognition performance on a low-resourced language.
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